Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,054 Bytes
c0490dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import logging
import random
import warnings
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from diffusers.utils import load_image
from gradio_imageslider import ImageSlider
from PIL import Image
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
device = "cuda"
else:
power_device = "CPU"
device = "cpu"
# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16
)
pipe.to(device)
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
def process_input(input_image, upscale_factor, **kwargs):
w, h = input_image.size
w_original, h_original = w, h
aspect_ratio = w / h
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(
f"Input image is too large ({w}x{h}). Resizing to {MAX_PIXEL_BUDGET} pixels."
)
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET // upscale_factor),
int(MAX_PIXEL_BUDGET // aspect_ratio // upscale_factor),
)
)
# resize to multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), w_original, h_original
# @spaces.GPU
def infer(
seed,
randomize_seed,
input_image,
num_inference_steps,
upscale_factor,
progress=gr.Progress(track_tqdm=True),
):
print(input_image)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
input_image, w_original, h_original = process_input(input_image, upscale_factor)
print(input_image.size, w_original, h_original)
# rescale with upscale factor
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt="",
control_image=control_image,
controlnet_conditioning_scale=0.6,
num_inference_steps=num_inference_steps,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
# resize to target desired size
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
image.save("output.jpg")
# convert to numpy
return [input_image, image]
with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# ⚡ Flux.1-dev Upscaler ControlNet ⚡
This is an interactive demo of [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler taking as input a low resolution image to generate a high resolution image.
Currently running on {power_device}.
"""
)
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
with gr.Column(scale=4):
input_im = gr.Image(label="Input Image", type="pil")
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=8,
maximum=50,
step=1,
value=28,
)
upscale_factor = gr.Slider(
label="Upscale Factor",
minimum=1,
maximum=4,
step=1,
value=4,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
result = ImageSlider(label="Input / Output", type="pil")
examples = gr.Examples(
examples=[
"examples/image_1.jpg",
"examples/image_1.jpg",
"examples/image_1.jpg",
"examples/image_1.jpg",
],
inputs=input_im,
)
gr.Markdown("**Disclaimer:**")
gr.Markdown(
"This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
)
gr.on(
[run_button.click],
fn=infer,
inputs=[seed, randomize_seed, input_im, num_inference_steps, upscale_factor],
outputs=result,
show_api=False,
# show_progress="minimal",
)
demo.queue().launch(share=True)
|