File size: 8,326 Bytes
c0490dd
 
 
da90319
c0490dd
 
 
 
 
 
 
 
e5efe2c
c0490dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5efe2c
 
 
 
 
 
 
 
 
 
 
 
c0490dd
 
 
 
 
e5efe2c
c0490dd
 
 
 
 
 
 
 
 
 
 
 
bfd8827
 
c0490dd
 
bc47113
c0490dd
bfd8827
6e8bc8b
bfd8827
c0490dd
 
bc47113
 
c0490dd
 
bfd8827
c0490dd
 
 
 
 
 
bfd8827
c0490dd
 
1a41547
c0490dd
 
 
 
 
 
bc47113
c0490dd
 
 
 
bc47113
bfd8827
 
 
c0490dd
 
 
 
 
 
 
6e8bc8b
c0490dd
 
 
bc47113
c0490dd
 
 
 
 
 
 
bfd8827
 
6e8bc8b
bfd8827
 
c0490dd
 
 
 
bc47113
c0490dd
 
 
 
 
 
 
d94db66
c0490dd
4f37994
31d2746
c0490dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc47113
 
 
 
 
 
 
c0490dd
 
 
 
 
 
 
 
 
 
 
6ac2fca
c0490dd
 
 
f469b17
 
 
 
 
 
c0490dd
ff771b6
 
 
 
 
 
 
 
 
 
0e1961e
c0490dd
 
74d257c
 
f469b17
 
 
 
 
 
 
74d257c
 
 
 
 
 
 
 
 
 
b132437
c0490dd
 
 
 
 
 
 
bc47113
 
 
 
 
 
 
 
c0490dd
 
 
 
 
b3f688a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import logging
import random
import warnings
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from gradio_imageslider import ImageSlider
from PIL import Image
from huggingface_hub import snapshot_download

css = """
#col-container {
    margin: 0 auto;
    max-width: 512px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
    device = "cuda"
else:
    power_device = "CPU"
    device = "cpu"


huggingface_token = os.getenv("HUGGINFACE_TOKEN")

model_path = snapshot_download(
    repo_id="black-forest-labs/FLUX.1-dev", 
    repo_type="model", 
    ignore_patterns=["*.md", "*..gitattributes"],
    local_dir="FLUX.1-dev",
    token=huggingface_token, # type a new token-id.
)


# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
    "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
    model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
)
pipe.to(device)

MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024


def process_input(input_image, upscale_factor, **kwargs):
    w, h = input_image.size
    w_original, h_original = w, h
    aspect_ratio = w / h

    was_resized = False

    if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
        warnings.warn(
            f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
        )
        gr.Info(
            f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
        )
        input_image = input_image.resize(
            (
                int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
                int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
            )
        )
        was_resized = True

    # resize to multiple of 8
    w, h = input_image.size
    w = w - w % 8
    h = h - h % 8

    return input_image.resize((w, h)), w_original, h_original, was_resized


@spaces.GPU#(duration=42)
def infer(
    seed,
    randomize_seed,
    input_image,
    num_inference_steps,
    upscale_factor,
    controlnet_conditioning_scale,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    true_input_image = input_image
    input_image, w_original, h_original, was_resized = process_input(
        input_image, upscale_factor
    )

    # rescale with upscale factor
    w, h = input_image.size
    control_image = input_image.resize((w * upscale_factor, h * upscale_factor))

    generator = torch.Generator().manual_seed(seed)

    gr.Info("Upscaling image...")
    image = pipe(
        prompt="",
        control_image=control_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        num_inference_steps=num_inference_steps,
        guidance_scale=3.5,
        height=control_image.size[1],
        width=control_image.size[0],
        generator=generator,
    ).images[0]

    if was_resized:
        gr.Info(
            f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
        )

    # resize to target desired size
    image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
    image.save("output.jpg")
    # convert to numpy
    return [true_input_image, image, seed]


with gr.Blocks(css=css) as demo:
    # with gr.Column(elem_id="col-container"):
    gr.Markdown(
        f"""
    # ⚡ Flux.1-dev Upscaler ControlNet ⚡
    This is an interactive demo of [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler) taking as input a low resolution image to generate a high resolution image.
    Currently running on {power_device}.

    *Note*: Even though the model can handle higher resolution images, due to GPU memory constraints, this demo was limited to a generated output not exceeding a pixel budget of 1024x1024. If the requested size exceeds that limit, the input will be first resized keeping the aspect ratio such that the output of the controlNet model does not exceed the allocated pixel budget. The output is then resized to the targeted shape using a simple resizing. This may explain some artifacts for high resolution input. To adress this, run the demo locally or consider implementing a tiling strategy. Happy upscaling! 🚀
    """
    )

    with gr.Row():
        run_button = gr.Button(value="Run")

    with gr.Row():
        with gr.Column(scale=4):
            input_im = gr.Image(label="Input Image", type="pil")
        with gr.Column(scale=1):
            num_inference_steps = gr.Slider(
                label="Number of Inference Steps",
                minimum=8,
                maximum=50,
                step=1,
                value=28,
            )
            upscale_factor = gr.Slider(
                label="Upscale Factor",
                minimum=1,
                maximum=4,
                step=1,
                value=4,
            )
            controlnet_conditioning_scale = gr.Slider(
                label="Controlnet Conditioning Scale",
                minimum=0.1,
                maximum=1.5,
                step=0.1,
                value=0.6,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    with gr.Row():
        result = ImageSlider(label="Input / Output", type="pil", interactive=True)

    examples = gr.Examples(
        examples=[
        #    [42, False, "examples/image_1.jpg", 28, 4, 0.6],
            [42, False, "examples/image_2.jpg", 28, 4, 0.6],
        #    [42, False, "examples/image_3.jpg", 28, 4, 0.6],
            [42, False, "examples/image_4.jpg", 28, 4, 0.6],
        #    [42, False, "examples/image_5.jpg", 28, 4, 0.6],
        #    [42, False, "examples/image_6.jpg", 28, 4, 0.6],
        ],
        inputs=[
            seed,
            randomize_seed,
            input_im,
            num_inference_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        fn=infer,
        outputs=result,
        cache_examples="lazy",
    )

    # examples = gr.Examples(
    #     examples=[
    #         #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_2.jpg", 28, 4, 0.6],
    #         #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
    #         #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_5.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_6.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_7.jpg", 28, 4, 0.6],
    #     ],
    #     inputs=[
    #         seed,
    #         randomize_seed,
    #         input_im,
    #         num_inference_steps,
    #         upscale_factor,
    #         controlnet_conditioning_scale,
    #     ],
    # )

    gr.Markdown("**Disclaimer:**")
    gr.Markdown(
        "This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
    )
    gr.on(
        [run_button.click],
        fn=infer,
        inputs=[
            seed,
            randomize_seed,
            input_im,
            num_inference_steps,
            upscale_factor,
            controlnet_conditioning_scale,
        ],
        outputs=result,
        show_api=False,
        # show_progress="minimal",
    )

demo.queue().launch(share=False, show_api=False)