File size: 23,561 Bytes
f4521c7
 
 
 
9b2e7a8
f4521c7
 
 
 
 
 
 
 
 
 
 
 
 
1619237
 
68149a7
f4521c7
9b2e7a8
f4521c7
 
 
 
 
 
b69206a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492286e
6ff5844
b69206a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff5844
b69206a
 
 
f4521c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b2e7a8
f4521c7
 
 
 
 
 
 
 
 
 
 
 
9b2e7a8
 
f4521c7
 
b69206a
f4521c7
 
 
b69206a
f4521c7
 
 
 
b69206a
f4521c7
 
 
b69206a
 
 
f4521c7
 
 
 
 
9b2e7a8
f4521c7
9b2e7a8
 
 
 
 
 
 
 
 
 
 
 
 
b69206a
9b2e7a8
 
 
 
 
f4521c7
 
 
b69206a
f4521c7
b69206a
f4521c7
 
b69206a
f4521c7
 
b69206a
 
 
f4521c7
 
 
9b2e7a8
 
 
 
 
 
 
b69206a
9b2e7a8
f4521c7
 
 
c2ef7cd
1619237
 
c2ef7cd
1619237
c2ef7cd
1619237
514298d
1619237
 
 
c2ef7cd
 
1619237
 
 
 
 
c2ef7cd
 
1619237
 
 
 
5dd979f
 
 
 
 
 
 
 
 
 
1619237
 
5dd979f
 
 
 
 
 
 
 
 
 
 
 
 
514298d
 
1619237
c2ef7cd
1619237
5dd979f
 
c2ef7cd
1619237
c2ef7cd
1619237
c2ef7cd
1619237
 
 
 
c2ef7cd
1619237
 
5dd979f
 
 
1619237
5dd979f
1619237
 
 
aeeb8ec
 
1619237
 
 
 
 
5dd979f
1619237
 
 
 
aeeb8ec
 
5d18f6d
1619237
 
5dd979f
1619237
 
 
 
 
 
 
aeeb8ec
 
 
 
1619237
 
 
 
 
 
fdf1292
 
c2ef7cd
aeeb8ec
 
 
1619237
514298d
07af821
1619237
5dd979f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf1292
b69206a
5dd979f
b69206a
9b2e7a8
514298d
b69206a
 
 
9b2e7a8
1619237
 
 
 
68149a7
 
1619237
9b2e7a8
 
 
 
 
 
 
 
514298d
9b2e7a8
 
 
0604b49
 
 
 
 
 
 
15160ea
9b2e7a8
514298d
9b2e7a8
 
 
 
 
 
dc396c4
9b2e7a8
0604b49
 
 
 
 
 
 
9b2e7a8
 
 
 
 
 
 
 
dc396c4
9b2e7a8
 
 
0604b49
9b2e7a8
6ff5844
 
9b2e7a8
0604b49
 
 
 
 
 
9b2e7a8
dc396c4
9b2e7a8
 
dc396c4
9b2e7a8
15160ea
9b2e7a8
 
15160ea
9b2e7a8
8d2bee8
9b2e7a8
15160ea
5dd979f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68149a7
 
 
 
0604b49
 
68149a7
 
9b2e7a8
6ff5844
9b2e7a8
6ff5844
9b2e7a8
15160ea
9b2e7a8
6ff5844
9b2e7a8
6ff5844
9b2e7a8
dc396c4
9b2e7a8
6ff5844
9b2e7a8
6ff5844
9b2e7a8
dc396c4
9b2e7a8
6ff5844
9b2e7a8
 
 
15160ea
9b2e7a8
6ff5844
9b2e7a8
 
 
 
 
6ff5844
9b2e7a8
 
 
 
0a893d9
6ff5844
9b2e7a8
 
 
 
 
6ff5844
9b2e7a8
 
 
 
0553d92
6ff5844
6446d45
9b2e7a8
 
 
 
6ff5844
9b2e7a8
 
 
 
 
 
 
 
b69206a
9b2e7a8
 
f80e309
3be7de8
8d2bee8
9b2e7a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import gradio as gr
import pandas as pd
import tempfile
import os
from pathlib import Path
from docx import Document
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import requests
import json
import websocket
import datetime
import hashlib
import hmac
import base64
from urllib.parse import urlparse, urlencode
from wsgiref.handlers import format_date_time
from time import mktime
import PyPDF2
import re
import io

# 星火认知大模型配置
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v4.0/chat'
SPARKAI_APP_ID = os.getenv('SPARKAI_APP_ID', '35943c2b')
SPARKAI_API_SECRET = os.getenv('SPARKAI_API_SECRET', 'MmY4ZTBiYzZhNTJhOTMzMTY5MWZkNmFi')
SPARKAI_API_KEY = os.getenv('SPARKAI_API_KEY', 'd8c7001937dc33d1ec74aef5030ed816')
SPARKAI_DOMAIN = '4.0Ultra'

# 语言翻译字典
TRANSLATIONS = {
    "中文": {
        "title": "AI职升姬",
        "subtitle": "输入您的简历信息,获取AI优化和生成的简历",
        "name": "姓名",
        "gender": "性别",
        "birthdate": "出生年月",
        "phone": "电话",
        "email": "邮件",
        "preferred_locations": "期望工作地",
        "political_status": "政治面貌",
        "hometown": "籍贯",
        "education": "教育经历",
        "school": "学校名称",
        "degree": "学历",
        "major": "专业",
        "time": "时间",
        "experience": "在校经历",
        "optimize_edu": "AI优化在校经历",
        "add_education": "添加教育经历",
        "delete_education": "删除最后一条教育经历",
        "work_experience": "实践经验",
        "company": "公司/组织",
        "position": "职位",
        "work_content": "工作内容",
        "optimize_exp": "AI优化工作内容",
        "add_experience": "添加实践经验",
        "delete_experience": "删除最后一条实践经验",
        "skills": "技能和获奖情况",
        "skill_name": "技能/奖项名称",
        "description": "描述",
        "optimize_skill": "AI优化描述",
        "add_skill": "添加技能/奖项",
        "delete_skill": "删除最后一条技能/奖项",
        "self_evaluation": "自我评价",
        "optimize_self": "AI优化自我评价",
        "file_format": "导出文件格式",
        "generate_resume": "生成简历",
        "preview": "简历预览",
        "download": "下载生成的简历",
        "male": "男",
        "female": "女",
        "bachelor": "学士",
        "master": "硕士",
        "phd": "博士",
        "other": "其他",
        "crowd": "群众",
        "league_member": "团员",
        "party_member": "党员"
    },
    "English": {
        "title": "AI Resume Booster",
        "subtitle": "Enter your resume information to get AI-optimized and generated resume",
        "name": "Name",
        "gender": "Gender",
        "birthdate": "Date of Birth",
        "phone": "Phone",
        "email": "Email",
        "preferred_locations": "Preferred Work Locations",
        "political_status": "Political Status",
        "hometown": "Hometown",
        "education": "Education",
        "school": "School Name",
        "degree": "Degree",
        "major": "Major",
        "time": "Time",
        "experience": "School Experience",
        "optimize_edu": "AI Optimize School Experience",
        "add_education": "Add Education",
        "delete_education": "Delete Last Education Entry",
        "work_experience": "Work Experience",
        "company": "Company/Organization",
        "position": "Position",
        "work_content": "Work Content",
        "optimize_exp": "AI Optimize Work Content",
        "add_experience": "Add Experience",
        "delete_experience": "Delete Last Experience Entry",
        "skills": "Skills and Awards",
        "skill_name": "Skill/Award Name",
        "description": "Description",
        "optimize_skill": "AI Optimize Description",
        "add_skill": "Add Skill/Award",
        "delete_skill": "Delete Last Skill/Award Entry",
        "self_evaluation": "Self Evaluation",
        "optimize_self": "AI Optimize Self Evaluation",
        "file_format": "Export File Format",
        "generate_resume": "Generate Resume",
        "preview": "Resume Preview",
        "download": "Download Generated Resume",
        "male": "Male",
        "female": "Female",
        "bachelor": "Bachelor",
        "master": "Master",
        "phd": "PhD",
        "other": "Other",
        "crowd": "Crowd",
        "league_member": "League Member",
        "party_member": "Party Member"
    }
}

class Ws_Param(object):
    def __init__(self, APPID, APIKey, APISecret, Spark_url):
        self.APPID = APPID
        self.APIKey = APIKey
        self.APISecret = APISecret
        self.host = urlparse(Spark_url).netloc
        self.path = urlparse(Spark_url).path
        self.Spark_url = Spark_url

    def create_url(self):
        now = datetime.datetime.now()
        date = format_date_time(mktime(now.timetuple()))

        signature_origin = "host: " + self.host + "\n"
        signature_origin += "date: " + date + "\n"
        signature_origin += "GET " + self.path + " HTTP/1.1"

        signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'),
                                 digestmod=hashlib.sha256).digest()

        signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')

        authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'

        authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')

        v = {
            "authorization": authorization,
            "date": date,
            "host": self.host
        }
        url = self.Spark_url + '?' + urlencode(v)
        return url

def gen_params(appid, query, domain):
    data = {
        "header": {
            "app_id": appid,
            "uid": "1234"
        },
        "parameter": {
            "chat": {
                "domain": domain,
                "random_threshold": 0.5,
                "max_tokens": 2048,
                "auditing": "default"
            }
        },
        "payload": {
            "message": {
                "text": [
                    {"role": "user", "content": query}
                ]
            }
        }
    }
    return data

def run_spark_api(query):
    wsParam = Ws_Param(SPARKAI_APP_ID, SPARKAI_API_KEY, SPARKAI_API_SECRET, SPARKAI_URL)
    websocket.enableTrace(False)
    wsUrl = wsParam.create_url()
    ws = websocket.create_connection(wsUrl)
    
    data = json.dumps(gen_params(SPARKAI_APP_ID, query, SPARKAI_DOMAIN))
    ws.send(data)

    response = ""
    while True:
        result = ws.recv()
        data = json.loads(result)
        code = data['header']['code']
        if code != 0:
            print(f'请求错误: {code}, {data}')
            break
        else:
            choices = data["payload"]["choices"]
            status = choices["status"]
            content = choices["text"][0]["content"]
            response += content
            if status == 2:
                break

    ws.close()
    return response

def ai_optimize(content, field):
    prompt = f"作为一名人力资源专家,请优化以下{field}内容,使其更加专业和有吸引力:\n\n{content}"
    return run_spark_api(prompt)

def generate_pdf(resume_data, file_path, lang):
    c = canvas.Canvas(file_path, pagesize=letter)
    width, height = letter
    c.setFont("Helvetica-Bold", 16)
    c.drawString(50, height - 50, TRANSLATIONS[lang]["title"])
    
    c.setFont("Helvetica", 12)
    y = height - 80
    for key, value in resume_data['personal_info'].items():
        c.drawString(50, y, f"{TRANSLATIONS[lang][key]}: {value}")
        y -= 20
    
    sections = [
        (TRANSLATIONS[lang]["education"], resume_data['education']),
        (TRANSLATIONS[lang]["work_experience"], resume_data['experience']),
        (TRANSLATIONS[lang]["skills"], resume_data['skills'])
    ]
    
    for title, data in sections:
        y -= 20
        c.setFont("Helvetica-Bold", 14)
        c.drawString(50, y, title)
        c.setFont("Helvetica", 12)
        if isinstance(data, list):
            for item in data:
                y -= 20
                c.drawString(70, y, " | ".join(str(v) for v in item.values()))
        else:
            text = c.beginText(70, y - 20)
            text.setFont("Helvetica", 12)
            text.textLines(data)
            c.drawText(text)
            y -= 60  # Adjust y position after drawing text
    
    y -= 40
    c.setFont("Helvetica-Bold", 14)
    c.drawString(50, y, TRANSLATIONS[lang]["self_evaluation"])
    c.setFont("Helvetica", 12)
    text = c.beginText(70, y - 20)
    text.setFont("Helvetica", 12)
    text.textLines(resume_data['self_evaluation'])
    c.drawText(text)
    
    c.save()

def generate_docx(resume_data, file_path, lang):
    doc = Document()
    doc.add_heading(TRANSLATIONS[lang]["title"], 0)
    
    for key, value in resume_data['personal_info'].items():
        doc.add_paragraph(f"{TRANSLATIONS[lang][key]}: {value}")
    
    sections = [
        (TRANSLATIONS[lang]["education"], resume_data['education']),
        (TRANSLATIONS[lang]["work_experience"], resume_data['experience']),
        (TRANSLATIONS[lang]["skills"], resume_data['skills'])
    ]
    
    for title, data in sections:
        doc.add_heading(title, level=1)
        if isinstance(data, list):
            for item in data:
                doc.add_paragraph(" | ".join(str(v) for v in item.values()))
        else:
            doc.add_paragraph(data)
    
    doc.add_heading(TRANSLATIONS[lang]["self_evaluation"], level=1)
    doc.add_paragraph(resume_data['self_evaluation'])
    
    doc.save(file_path)

def parse_resume(content, file_type):
    try:
        if file_type == 'pdf':
            return parse_pdf(content)
        elif file_type == 'docx':
            return parse_docx(content)
        else:
            return parse_text(content.decode('utf-8'))
    except Exception as e:
        return f"解析错误:{str(e)}"

def parse_pdf(content):
    pdf_reader = PyPDF2.PdfReader(io.BytesIO(content))
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()
    return parse_text(text)

def parse_docx(content):
    doc = Document(io.BytesIO(content))
    text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
    return parse_text(text)

def parse_text(text):
    patterns = {
        'name': r'姓名[::]\s*(.+)',
        'gender': r'性别[::]\s*(.+)',
        'birthdate': r'(出生年月|生日)[::]\s*(.+)',
        'phone': r'(电话|手机)[::]\s*(.+)',
        'email': r'(邮箱|邮件|E-mail)[::]\s*(.+)',
        'education': r'教育经历[::](.*?)(?=工作经验|技能|$)',
        'experience': r'(工作经验|实习经历)[::](.*?)(?=教育背景|技能|$)',
        'skills': r'(技能|专业技能)[::](.*?)(?=自我评价|$)',
        'self_evaluation': r'(自我评价|自我介绍)[::](.*)'
    }
    
    parsed_data = {k: re.search(v, text, re.DOTALL) for k, v in patterns.items()}
    
    result = {}
    for k, v in parsed_data.items():
        if v:
            if k == 'birthdate':
                result[k] = v.group(2)
            elif k in ['education', 'experience', 'skills']:
                result[k] = v.group(0)
            else:
                result[k] = v.group(1)
        else:
            result[k] = ''
    
    return result

def import_resume(file_obj, pasted_text):
    if file_obj is not None:
        file_type = file_obj.name.split('.')[-1].lower() if hasattr(file_obj, 'name') else 'unknown'
        file_content = file_obj.read() if hasattr(file_obj, 'read') else str(file_obj).encode('utf-8')
    elif pasted_text:
        file_type = 'text'
        file_content = pasted_text.encode('utf-8')
    else:
        return [""] * 10 + [pd.DataFrame()] * 3 + ["请上传文件或粘贴文本"]

    parsed_data = parse_resume(file_content, file_type)
    
    if isinstance(parsed_data, str):  # Error occurred
        return [""] * 10 + [pd.DataFrame()] * 3 + [parsed_data]
    
    education_data = []
    experience_data = []
    skill_data = []

    if parsed_data.get('education'):
        edu_entries = re.findall(r'(.+?大学).*?(\d{4}年\d{1,2}月).*?(\d{4}年\d{1,2}月)', parsed_data['education'], re.DOTALL)
        for school, start_date, end_date in edu_entries:
            education_data.append({
                "学校": school,
                "学历": "",
                "专业": "",
                "时间": f"{start_date}-{end_date}",
                "在校经历": ""
            })
    
    if parsed_data.get('experience'):
        exp_entries = re.findall(r'(.+?公司).*?(\d{4}年\d{1,2}月).*?(\d{4}年\d{1,2}月)', parsed_data['experience'], re.DOTALL)
        for company, start_date, end_date in exp_entries:
            experience_data.append({
                "时间": f"{start_date}-{end_date}",
                "公司/组织": company,
                "职位": "",
                "工作内容": ""
            })
    
    if parsed_data.get('skills'):
        skills = re.findall(r'([\w\s]+)', parsed_data['skills'])
        for skill in skills:
            skill_data.append({
                "时间": "",
                "技能/奖项名称": skill.strip(),
                "描述": ""
            })
    
    education_df = pd.DataFrame(education_data) if education_data else pd.DataFrame(columns=["学校", "学历", "专业", "时间", "在校经历"])
    experience_df = pd.DataFrame(experience_data) if experience_data else pd.DataFrame(columns=["时间", "公司/组织", "职位", "工作内容"])
    skill_df = pd.DataFrame(skill_data) if skill_data else pd.DataFrame(columns=["时间", "技能/奖项名称", "描述"])
    
    return [
        parsed_data.get('name', ''),
        parsed_data.get('gender', ''),
        parsed_data.get('birthdate', ''),
        parsed_data.get('phone', ''),
        parsed_data.get('email', ''),
        [],  # preferred_locations
        "",  # political_status
        "",  # hometown
        education_df,
        experience_df,
        skill_df,
        parsed_data.get('self_evaluation', ''),
        "简历导入成功,请检查并补充缺失的信息。"
    ]

def gradio_interface(
    name, gender, birthdate, phone, email, preferred_locations, political_status, hometown,
    education_data, experience_data, skill_data, self_evaluation, file_format, lang
):
    resume_data = {
        'personal_info': {
            'name': name,
            'gender': gender,
            'birthdate': birthdate,
            'phone': phone,
            'email': email,
            'preferred_locations': ", ".join(preferred_locations),
            'political_status': political_status,
            'hometown': hometown
        },
        'education': education_data.to_dict('records'),
        'experience': experience_data.to_dict('records'),
        'skills': skill_data.to_dict('records'),
        'self_evaluation': self_evaluation
    }
    
    preview = f"""
    {TRANSLATIONS[lang]['name']}:
    {resume_data['personal_info']}
    
    {TRANSLATIONS[lang]['education']}:
    {resume_data['education']}
    
    {TRANSLATIONS[lang]['work_experience']}:
    {resume_data['experience']}
    
    {TRANSLATIONS[lang]['skills']}:
    {resume_data['skills']}
    
    {TRANSLATIONS[lang]['self_evaluation']}:
    {resume_data['self_evaluation']}
    """
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_format}") as temp_file:
        file_path = temp_file.name
    
    if file_format == 'pdf':
        generate_pdf(resume_data, file_path, lang)
    else:
        generate_docx(resume_data, file_path, lang)
    
    return preview, file_path

def add_item(data, *args):
    new_item = pd.DataFrame([list(args)], columns=data.columns)
    data = pd.concat([data, new_item], ignore_index=True)
    return (data,) + tuple(gr.update(value="") for _ in args)

def delete_item(data, index):
    if 0 <= index < len(data):
        data = data.drop(index).reset_index(drop=True)
    return data

def optimize_text(text, field):
    optimized = ai_optimize(text, field)
    return optimized

def update_language(lang):
    return [gr.update(value=TRANSLATIONS[lang][key]) for key in TRANSLATIONS[lang]]

with gr.Blocks() as iface:
    lang = gr.Dropdown(choices=["中文", "English"], value="中文", label="Language/语言", allow_custom_value=True)
    
    title = gr.Markdown("# AI职升姬")
    subtitle = gr.Markdown("输入您的简历信息,获取AI优化和生成的简历")
    
    with gr.Row():
        file_upload = gr.File(label="上传简历文件(PDF或DOCX)")
        text_input = gr.Textbox(label="或粘贴简历内容", lines=5)
    
    import_btn = gr.Button("导入简历")
    import_status = gr.Textbox(label="导入状态", interactive=False)
    
    with gr.Row():
        with gr.Column():
            name = gr.Textbox(label="姓名")
            gender = gr.Radio(["男", "女"], label="性别")
            birthdate = gr.Textbox(label="出生年月")
            phone = gr.Textbox(label="电话")
            email = gr.Textbox(label="邮件")
            preferred_locations = gr.CheckboxGroup(["北京", "上海", "广州", "深圳", "其他"], label="期望工作地")
            political_status = gr.Dropdown(["群众", "团员", "党员"], label="政治面貌", allow_custom_value=True)
            hometown = gr.Textbox(label="籍贯")

    with gr.Accordion("教育经历"):
        education_list = gr.Dataframe(
            headers=["学校", "学历", "专业", "时间", "在校经历"],
            label="教育经历",
            interactive=True,
            col_count=(5, "fixed"),
            type="pandas"
        )
        with gr.Row():
            school = gr.Textbox(label="学校名称")
            degree = gr.Dropdown(["学士", "硕士", "博士", "其他"], label="学历", allow_custom_value=True)
            major = gr.Textbox(label="专业")
            edu_time = gr.Textbox(label="时间")
        education_exp = gr.TextArea(label="在校经历")
        optimize_edu_btn = gr.Button("AI优化在校经历")
        add_education = gr.Button("添加教育经历")
        delete_education = gr.Button("删除最后一条教育经历")

    with gr.Accordion("实践经验"):
        experience_list = gr.Dataframe(
            headers=["时间", "公司/组织", "职位", "工作内容"],
            label="实践经验",
            interactive=True,
            col_count=(4, "fixed"),
            type="pandas"
        )
        with gr.Row():
            exp_time = gr.Textbox(label="时间")
            exp_company = gr.Textbox(label="公司/组织")
            exp_position = gr.Textbox(label="职位")
        exp_content = gr.TextArea(label="工作内容")
        optimize_exp_btn = gr.Button("AI优化工作内容")
        add_experience = gr.Button("添加实践经验")
        delete_experience = gr.Button("删除最后一条实践经验")

    with gr.Accordion("技能和获奖情况"):
        skill_list = gr.Dataframe(
            headers=["时间", "技能/奖项名称", "描述"],
            label="技能和获奖情况",
            interactive=True,
            col_count=(3, "fixed"),
            type="pandas"
        )
        with gr.Row():
            skill_time = gr.Textbox(label="时间")
            skill_name = gr.Textbox(label="技能/奖项名称")
        skill_description = gr.TextArea(label="描述")
        optimize_skill_btn = gr.Button("AI优化描述")
        add_skill = gr.Button("添加技能/奖项")
        delete_skill = gr.Button("删除最后一条技能/奖项")

    self_evaluation = gr.TextArea(label="自我评价")
    optimize_self_btn = gr.Button("AI优化自我评价")

    file_format = gr.Radio(["pdf", "docx"], label="导出文件格式", value="pdf")

    with gr.Row():
        submit_btn = gr.Button("生成简历")

    with gr.Row():
        preview = gr.Textbox(label="简历预览", lines=10)
        resume_output = gr.File(label="下载生成的简历")

    # 语言切换功能
    lang.change(
        update_language,
        inputs=[lang],
        outputs=[
            title, subtitle, name, gender, birthdate, phone, email, preferred_locations,
            political_status, hometown, school, degree, major, edu_time, education_exp,
            optimize_edu_btn, add_education, delete_education, exp_time, exp_company,
            exp_position, exp_content, optimize_exp_btn, add_experience, delete_experience,
            skill_time, skill_name, skill_description, optimize_skill_btn, add_skill,
            delete_skill, self_evaluation, optimize_self_btn, file_format, submit_btn,
            preview, resume_output, import_btn, import_status
        ]
    )

    # 连接导入按钮和导入函数
    import_btn.click(
        import_resume,
        inputs=[file_upload, text_input],
        outputs=[name, gender, birthdate, phone, email, preferred_locations, political_status, 
                 hometown, education_list, experience_list, skill_list, self_evaluation, import_status]
    )

    add_education.click(
        add_item,
        inputs=[education_list, school, degree, major, edu_time, education_exp],
        outputs=[education_list, school, degree, major, edu_time, education_exp]
    )

    add_experience.click(
        add_item,
        inputs=[experience_list, exp_time, exp_company, exp_position, exp_content],
        outputs=[experience_list, exp_time, exp_company, exp_position, exp_content]
    )

    add_skill.click(
        add_item,
        inputs=[skill_list, skill_time, skill_name, skill_description],
        outputs=[skill_list, skill_time, skill_name, skill_description]
    )

    delete_education.click(
        lambda df: delete_item(df, len(df) - 1) if len(df) > 0 else df,
        inputs=[education_list],
        outputs=[education_list]
    )

    delete_experience.click(
        lambda df: delete_item(df, len(df) - 1) if len(df) > 0 else df,
        inputs=[experience_list],
        outputs=[experience_list]
    )

    delete_skill.click(
        lambda df: delete_item(df, len(df) - 1) if len(df) > 0 else df,
        inputs=[skill_list],
        outputs=[skill_list]
    )

    optimize_edu_btn.click(
        optimize_text,
        inputs=[education_exp, gr.Textbox(value="在校经历", visible=False)],
        outputs=[education_exp]
    )

    optimize_exp_btn.click(
        optimize_text,
        inputs=[exp_content, gr.Textbox(value="工作内容", visible=False)],
        outputs=[exp_content]
    )

    optimize_skill_btn.click(
        optimize_text,
        inputs=[skill_description, gr.Textbox(value="技能描述", visible=False)],
        outputs=[skill_description]
    )

    optimize_self_btn.click(
        optimize_text,
        inputs=[self_evaluation, gr.Textbox(value="自我评价", visible=False)],
        outputs=[self_evaluation]
    )

    submit_btn.click(
        gradio_interface,
        inputs=[
            name, gender, birthdate, phone, email, preferred_locations, political_status, hometown,
            education_list, experience_list, skill_list, self_evaluation, file_format, lang
        ],
        outputs=[preview, resume_output]
    )

# 启动Gradio接口
iface.launch()