File size: 29,368 Bytes
a05c27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
# Prediction interface for Cog βš™οΈ
# https://cog.run/python

import os
import copy
import random
import subprocess
import numpy as np
import time
import torch
import torch.nn.functional as F
from PIL import ImageFont
from cog import BasePredictor, Input, Path, BaseModel
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
from diffusers.utils import load_image

from utils import PhotoMakerStableDiffusionXLPipeline
from utils.style_template import styles
from utils.gradio_utils import (
    AttnProcessor2_0 as AttnProcessor,
)  # with torch2 installed
from utils.gradio_utils import cal_attn_mask_xl
from utils.utils import get_comic

MODEL_URL = "https://weights.replicate.delivery/default/HVision_NKU/StoryDiffusion.tar"
MODEL_CACHE = "model_weights"
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Japanese Anime"

global total_count, attn_count, cur_step, mask1024, mask4096, attn_procs, unet
global sa32, sa64
global write
global height, width


"""

# load and upload the weights to replicate.delivery for faster booting on Replicate

models_dict = {

    "RealVision": "SG161222/RealVisXL_V4.0",

    "Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y",

}

# photomaker_path =  hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")

photomaker_path = f"{MODEL_CACHE}/PhotoMaker/photomaker-v1.bin"



pipe_unstable = PhotoMakerStableDiffusionXLPipeline.from_pretrained(

    models_dict["Unstable"],

    torch_dtype=torch.float16,

    use_safetensors=False,

)

pipe_unstable.save_pretrained(f"{MODEL_CACHE}/Unstable/stablediffusionapi/sdxl-unstable-diffusers-y")



pipe_realvision = PhotoMakerStableDiffusionXLPipeline.from_pretrained(

    models_dict["RealVision"], torch_dtype=torch.float16, use_safetensors=True

)

pipe_realvision.save_pretrained(f"{MODEL_CACHE}/RealVision/SG161222/RealVisXL_V4.0")

"""


class ModelOutput(BaseModel):
    comic: Path
    individual_images: list[Path]


def download_weights(url, dest):
    start = time.time()
    print("downloading url: ", url)
    print("downloading to: ", dest)
    subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
    print("downloading took: ", time.time() - start)


def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def apply_style_positive(style_name: str, positive: str):
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive)


def apply_style(style_name: str, positives: list, negative: str = ""):
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return [
        p.replace("{prompt}", positive) for positive in positives
    ], n + " " + negative


def set_attention_processor(unet, id_length, is_ipadapter=False):
    global total_count
    total_count = 0
    attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = (
            None
            if name.endswith("attn1.processor")
            else unet.config.cross_attention_dim
        )
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
        if cross_attention_dim is None:
            if name.startswith("up_blocks"):
                attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
                total_count += 1
            else:
                attn_procs[name] = AttnProcessor()
        else:
            if is_ipadapter:
                attn_procs[name] = IPAttnProcessor2_0(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    scale=1,
                    num_tokens=4,
                ).to(unet.device, dtype=torch.float16)
            else:
                attn_procs[name] = AttnProcessor()

    unet.set_attn_processor(copy.deepcopy(attn_procs))
    print("Successfully load paired self-attention")
    print(f"Number of the processor : {total_count}")


#################################################
########Consistent Self-Attention################
#################################################
class SpatialAttnProcessor2_0(torch.nn.Module):
    r"""

    Attention processor for IP-Adapater for PyTorch 2.0.

    Args:

        hidden_size (`int`):

            The hidden size of the attention layer.

        cross_attention_dim (`int`):

            The number of channels in the `encoder_hidden_states`.

        text_context_len (`int`, defaults to 77):

            The context length of the text features.

        scale (`float`, defaults to 1.0):

            the weight scale of image prompt.

    """

    def __init__(

        self,

        hidden_size=None,

        cross_attention_dim=None,

        id_length=4,

        device="cuda",

        dtype=torch.float16,

    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )
        self.device = device
        self.dtype = dtype
        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.total_length = id_length + 1
        self.id_length = id_length
        self.id_bank = {}

    def __call__(

        self,

        attn,

        hidden_states,

        encoder_hidden_states=None,

        attention_mask=None,

        temb=None,

    ):
        global total_count, attn_count, cur_step, mask1024, mask4096
        global sa32, sa64
        global write
        global height, width
        if write:
            self.id_bank[cur_step] = [
                hidden_states[: self.id_length],
                hidden_states[self.id_length :],
            ]
        else:
            encoder_hidden_states = torch.cat(
                (
                    self.id_bank[cur_step][0].to(self.device),
                    hidden_states[:1],
                    self.id_bank[cur_step][1].to(self.device),
                    hidden_states[1:],
                )
            )
        # skip in early step
        if cur_step < 5:
            hidden_states = self.__call2__(
                attn, hidden_states, encoder_hidden_states, attention_mask, temb
            )
        else:  # 256 1024 4096
            random_number = random.random()
            if cur_step < 20:
                rand_num = 0.3
            else:
                rand_num = 0.1
            if random_number > rand_num:
                if not write:
                    if hidden_states.shape[1] == (height // 32) * (width // 32):
                        attention_mask = mask1024[
                            mask1024.shape[0] // self.total_length * self.id_length :
                        ]
                    else:
                        attention_mask = mask4096[
                            mask4096.shape[0] // self.total_length * self.id_length :
                        ]
                else:
                    if hidden_states.shape[1] == (height // 32) * (width // 32):
                        attention_mask = mask1024[
                            : mask1024.shape[0] // self.total_length * self.id_length,
                            : mask1024.shape[0] // self.total_length * self.id_length,
                        ]
                    else:
                        attention_mask = mask4096[
                            : mask4096.shape[0] // self.total_length * self.id_length,
                            : mask4096.shape[0] // self.total_length * self.id_length,
                        ]
                hidden_states = self.__call1__(
                    attn, hidden_states, encoder_hidden_states, attention_mask, temb
                )
            else:
                hidden_states = self.__call2__(
                    attn, hidden_states, None, attention_mask, temb
                )
        attn_count += 1
        if attn_count == total_count:
            attn_count = 0
            cur_step += 1
            mask1024, mask4096 = cal_attn_mask_xl(
                self.total_length,
                self.id_length,
                sa32,
                sa64,
                height,
                width,
                device=self.device,
                dtype=self.dtype,
            )

        return hidden_states

    def __call1__(

        self,

        attn,

        hidden_states,

        encoder_hidden_states=None,

        attention_mask=None,

        temb=None,

    ):
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            total_batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                total_batch_size, channel, height * width
            ).transpose(1, 2)
        total_batch_size, nums_token, channel = hidden_states.shape
        img_nums = total_batch_size // 2
        hidden_states = hidden_states.view(-1, img_nums, nums_token, channel).reshape(
            -1, img_nums * nums_token, channel
        )

        batch_size, sequence_length, _ = hidden_states.shape

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states  # B, N, C
        else:
            encoder_hidden_states = encoder_hidden_states.view(
                -1, self.id_length + 1, nums_token, channel
            ).reshape(-1, (self.id_length + 1) * nums_token, channel)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            total_batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                total_batch_size, channel, height, width
            )
        if attn.residual_connection:
            hidden_states = hidden_states + residual
        hidden_states = hidden_states / attn.rescale_output_factor
        # print(hidden_states.shape)
        return hidden_states

    def __call2__(

        self,

        attn,

        hidden_states,

        encoder_hidden_states=None,

        attention_mask=None,

        temb=None,

    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, sequence_length, channel = hidden_states.shape
        # print(hidden_states.shape)
        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, batch_size
            )
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                batch_size, attn.heads, -1, attention_mask.shape[-1]
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states  # B, N, C
        else:
            encoder_hidden_states = encoder_hidden_states.view(
                -1, self.id_length + 1, sequence_length, channel
            ).reshape(-1, (self.id_length + 1) * sequence_length, channel)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class Predictor(BasePredictor):
    def setup(self) -> None:
        """Load the model into memory to make running multiple predictions efficient"""

        models_dict = {
            "RealVision": "SG161222/RealVisXL_V4.0",
            "Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y",
        }

        if not os.path.exists(MODEL_CACHE):
            download_weights(MODEL_URL, MODEL_CACHE)

        photomaker_path = f"{MODEL_CACHE}/PhotoMaker/photomaker-v1.bin"

        self.sdxl_pipe_unstable = StableDiffusionXLPipeline.from_pretrained(
            f"{MODEL_CACHE}/Unstable/sdxl/stablediffusionapi/sdxl-unstable-diffusers-y",
            torch_dtype=torch.float16,
        )
        self.sdxl_pipe_realvision = StableDiffusionXLPipeline.from_pretrained(
            f"{MODEL_CACHE}/RealVision/sdxl/SG161222/RealVisXL_V4.0",
            torch_dtype=torch.float16,
        )

        self.pipe_unstable = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
            f"{MODEL_CACHE}/Unstable/stablediffusionapi/sdxl-unstable-diffusers-y",
            torch_dtype=torch.float16,
            use_safetensors=False,
        )
        self.pipe_unstable.load_photomaker_adapter(
            os.path.dirname(photomaker_path),
            subfolder="",
            weight_name=os.path.basename(photomaker_path),
            trigger_word="img",  # define the trigger word
        )

        self.pipe_realvision = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
            f"{MODEL_CACHE}/RealVision/SG161222/RealVisXL_V4.0",
            torch_dtype=torch.float16,
            use_safetensors=True,
        )
        self.pipe_realvision.load_photomaker_adapter(
            os.path.dirname(photomaker_path),
            subfolder="",
            weight_name=os.path.basename(photomaker_path),
            trigger_word="img",  # define the trigger word
        )
        self.pipe_realvision.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
        self.pipe_realvision.fuse_lora()

    @torch.inference_mode()
    def predict(

        self,

        sd_model: str = Input(

            description="Choose a model",

            choices=["Unstable", "RealVision"],

            default="Unstable",

        ),

        ref_image: Path = Input(

            description="Reference image for the character",

            default=None,

        ),

        character_description: str = Input(

            description="General description of the character. If ref_image above is provided, making sure to follow the class word you want to customize with the trigger word 'img', such as: 'man img' or 'woman img' or 'girl img'",

            default="a man, wearing black suit",

        ),

        negative_prompt: str = Input(

            description="Describe things you do not want to see in the output",

            default="bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",

        ),

        comic_description: str = Input(

            description="Comic Description. Each frame is divided by a new line. Only the first 10 prompts are valid for demo speed! For comic_description NOT using ref_image: (1) Support Typesetting Style and Captioning. By default, the prompt is used as the caption for each image. If you need to change the caption, add a '#' at the end of each line. Only the part after the '#' will be added as a caption to the image. (2) The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the '[NC]' at the beginning of the line.",

            default="at home, read new paper #at home, The newspaper says there is a treasure house in the forest.\non the road, near the forest\n[NC] The car on the road, near the forest #He drives to the forest in search of treasure.\n[NC]A tiger appeared in the forest, at night \nvery frightened, open mouth, in the forest, at night\nrunning very fast, in the forest, at night\n[NC] A house in the forest, at night #Suddenly, he discovers the treasure house!\nin the house filled with  treasure, laughing, at night #He is overjoyed inside the house.",

        ),

        style_name: str = Input(

            description="Style template",

            choices=STYLE_NAMES,

            default=DEFAULT_STYLE_NAME,

        ),

        comic_style: str = Input(

            description="Select the comic style for the combined comic",

            choices=["Four Pannel", "Classic Comic Style"],

            default="Classic Comic Style",

        ),

        style_strength_ratio: int = Input(

            description="Style strength of Ref Image (%), only used if ref_image is provided",

            default=20,

            ge=15,

            le=50,

        ),

        image_width: int = Input(

            description="Width of output image",

            choices=[

                256,

                288,

                320,

                352,

                384,

                416,

                448,

                480,

                512,

                544,

                576,

                608,

                640,

                672,

                704,

                736,

                768,

                800,

                832,

                864,

                896,

                928,

                960,

                992,

                1024,

            ],

            default=768,

        ),

        image_height: int = Input(

            description="Height of output image",

            choices=[

                256,

                288,

                320,

                352,

                384,

                416,

                448,

                480,

                512,

                544,

                576,

                608,

                640,

                672,

                704,

                736,

                768,

                800,

                832,

                864,

                896,

                928,

                960,

                992,

                1024,

            ],

            default=768,

        ),

        num_steps: int = Input(

            description="Number of sample steps", ge=20, le=50, default=25

        ),

        guidance_scale: float = Input(

            description="Scale for classifier-free guidance", ge=0.1, le=10, default=5

        ),

        seed: int = Input(

            description="Random seed. Leave blank to randomize the seed", default=None

        ),

        sa32_setting: float = Input(

            description="The degree of Paired Attention at 32 x 32 self-attention layers",

            default=0.5,

            ge=0,

            le=1.0,

        ),

        sa64_setting: float = Input(

            description="The degree of Paired Attention at 64 x 64 self-attention layers",

            default=0.5,

            ge=0,

            le=1.0,

        ),

        num_ids: int = Input(

            description="Number of id images in total images. This should not exceed total number of line-separated prompts",

            default=3,

        ),

        output_format: str = Input(

            description="Format of the output images",

            choices=["webp", "jpg", "png"],

            default="webp",

        ),

        output_quality: int = Input(

            description="Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality",

            default=80,

            ge=0,

            le=100,

        ),

    ) -> ModelOutput:
        """Run a single prediction on the model"""

        global total_count, attn_count, cur_step, mask1024, mask4096, attn_procs, unet
        global sa32, sa64
        global write
        global height, width

        assert (
            len(character_description.strip()) > 0
        ), "Please provide the description of the character."

        if ref_image is not None:
            assert (
                "img" in character_description
            ), f"When using ref_image, please add the trigger word 'img' behind the class word you want to customize, such as: man img or woman img"
            assert (
                "[NC]" not in comic_description
            ), "You should not use trigger word [NC] when ref_image is provided."

        height = image_height
        width = image_width
        id_length = num_ids
        sa32 = sa32_setting
        sa64 = sa64_setting

        clipped_prompts = comic_description.splitlines()[:10]
        print(clipped_prompts)
        prompts = [
            (
                character_description + "," + prompt
                if "[NC]" not in prompt
                else prompt.replace("[NC]", "")
            )
            for prompt in clipped_prompts
        ]
        print(prompts)
        prompts = [
            prompt.rpartition("#")[0].strip() if "#" in prompt else prompt.strip()
            for prompt in prompts
        ]
        print(prompts)
        assert id_length <= len(
            prompts
        ), "id_length should not exceed total number of line-separated prompts"

        id_prompts = prompts[:id_length]
        real_prompts = prompts[id_length:]

        if seed is None:
            seed = int.from_bytes(os.urandom(2), "big")
        print(f"Using seed: {seed}")

        device = "cuda:0"
        setup_seed(seed)
        generator = torch.Generator(device=device).manual_seed(seed)

        torch.cuda.empty_cache()

        model_type = "original" if ref_image is None else "Photomaker"

        if model_type == "original":
            pipe = (
                self.sdxl_pipe_realvision
                if style_name == "(No style)"
                else self.sdxl_pipe_unstable
            )
            pipe = pipe.to(device)
            pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
        else:
            if sd_model != "RealVision" and style_name != "(No style)":
                pipe = self.pipe_unstable.to(device)
            else:
                pipe = self.pipe_realvision.to(device)
            pipe.id_encoder.to(device)

        write = True
        cur_step = 0
        attn_count = 0

        set_attention_processor(pipe.unet, id_length, is_ipadapter=False)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
        curmodel_type = sd_model + "-" + model_type + "" + str(id_length)

        id_prompts, negative_prompt = apply_style(
            style_name, id_prompts, negative_prompt
        )

        total_results = []
        if model_type == "original":
            id_images = pipe(
                id_prompts,
                num_inference_steps=num_steps,
                guidance_scale=guidance_scale,
                height=height,
                width=width,
                negative_prompt=negative_prompt,
                generator=generator,
            ).images
        else:
            input_id_images = [load_image(str(ref_image))]
            start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
            id_images = pipe(
                id_prompts,
                input_id_images=input_id_images,
                num_inference_steps=num_steps,
                guidance_scale=guidance_scale,
                start_merge_step=start_merge_step,
                height=height,
                width=width,
                negative_prompt=negative_prompt,
                generator=generator,
            ).images

        total_results = id_images + total_results

        real_images = []
        write = False
        for real_prompt in real_prompts:
            cur_step = 0
            real_prompt = apply_style_positive(style_name, real_prompt)
            if model_type == "original":
                real_images.append(
                    pipe(
                        real_prompt,
                        num_inference_steps=num_steps,
                        guidance_scale=guidance_scale,
                        height=height,
                        width=width,
                        negative_prompt=negative_prompt,
                        generator=generator,
                    ).images[0]
                )
            else:
                real_images.append(
                    pipe(
                        real_prompt,
                        input_id_images=input_id_images,
                        num_inference_steps=num_steps,
                        guidance_scale=guidance_scale,
                        start_merge_step=start_merge_step,
                        height=height,
                        width=width,
                        negative_prompt=negative_prompt,
                        generator=generator,
                    ).images[0]
                )

            total_results = [real_images[-1]] + total_results

        captions = clipped_prompts
        captions = [caption.replace("[NC]", "") for caption in captions]
        captions = [
            caption.split("#")[-1].strip() if "#" in caption else caption.strip()
            for caption in captions
        ]

        comic = get_comic(
            id_images + real_images,
            comic_style,
            captions=captions,
            font=ImageFont.truetype("./fonts/Inkfree.ttf", int(45)),
        )

        extension = output_format.lower()
        extension = "jpeg" if extension == "jpg" else extension
        comic_out = f"/tmp/comic.{extension}"
        comic[0].save(comic_out)

        save_params = {"format": extension.upper()}
        if not output_format == "png":
            save_params["quality"] = output_quality
            save_params["optimize"] = True

        output_paths = []
        for index, sample in enumerate(total_results[::-1]):
            output_filename = f"/tmp/out-{index}.{extension}"
            sample.save(output_filename, **save_params)
            output_paths.append(Path(output_filename))

        del pipe

        return ModelOutput(comic=Path(comic_out), individual_images=output_paths)