File size: 9,472 Bytes
19fe404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import csv
import io
import json
import math
import os
import random
from threading import Thread

import albumentations
import cv2
import gc
import numpy as np
import torch
import torchvision.transforms as transforms
from func_timeout import func_timeout, FunctionTimedOut
from decord import VideoReader
from PIL import Image
from torch.utils.data import BatchSampler, Sampler
from torch.utils.data.dataset import Dataset
from contextlib import contextmanager

VIDEO_READER_TIMEOUT = 20

class ImageVideoSampler(BatchSampler):
    """A sampler wrapper for grouping images with similar aspect ratio into a same batch.

    Args:
        sampler (Sampler): Base sampler.
        dataset (Dataset): Dataset providing data information.
        batch_size (int): Size of mini-batch.
        drop_last (bool): If ``True``, the sampler will drop the last batch if
            its size would be less than ``batch_size``.
        aspect_ratios (dict): The predefined aspect ratios.
    """

    def __init__(self,
                 sampler: Sampler,
                 dataset: Dataset,
                 batch_size: int,
                 drop_last: bool = False
                ) -> None:
        if not isinstance(sampler, Sampler):
            raise TypeError('sampler should be an instance of ``Sampler``, '
                            f'but got {sampler}')
        if not isinstance(batch_size, int) or batch_size <= 0:
            raise ValueError('batch_size should be a positive integer value, '
                             f'but got batch_size={batch_size}')
        self.sampler = sampler
        self.dataset = dataset
        self.batch_size = batch_size
        self.drop_last = drop_last

        # buckets for each aspect ratio
        self.bucket = {'image':[], 'video':[]}

    def __iter__(self):
        for idx in self.sampler:
            content_type = self.dataset.dataset[idx].get('type', 'image')
            self.bucket[content_type].append(idx)

            # yield a batch of indices in the same aspect ratio group
            if len(self.bucket['video']) == self.batch_size:
                bucket = self.bucket['video']
                yield bucket[:]
                del bucket[:]
            elif len(self.bucket['image']) == self.batch_size:
                bucket = self.bucket['image']
                yield bucket[:]
                del bucket[:]

@contextmanager
def VideoReader_contextmanager(*args, **kwargs):
    vr = VideoReader(*args, **kwargs)
    try:
        yield vr
    finally:
        del vr
        gc.collect()

def get_video_reader_batch(video_reader, batch_index):
    frames = video_reader.get_batch(batch_index).asnumpy()
    return frames

class ImageVideoDataset(Dataset):
    def __init__(
            self,
            ann_path, data_root=None,
            video_sample_size=512, video_sample_stride=4, video_sample_n_frames=16,
            image_sample_size=512,
            video_repeat=0,
            text_drop_ratio=0.001,
            enable_bucket=False,
            video_length_drop_start=0.1, 
            video_length_drop_end=0.9,
        ):
        # Loading annotations from files
        print(f"loading annotations from {ann_path} ...")
        if ann_path.endswith('.csv'):
            with open(ann_path, 'r') as csvfile:
                dataset = list(csv.DictReader(csvfile))
        elif ann_path.endswith('.json'):
            dataset = json.load(open(ann_path))
    
        self.data_root = data_root

        # It's used to balance num of images and videos.
        self.dataset = []
        for data in dataset:
            if data.get('type', 'image') != 'video':
                self.dataset.append(data)
        if video_repeat > 0:
            for _ in range(video_repeat):
                for data in dataset:
                    if data.get('type', 'image') == 'video':
                        self.dataset.append(data)
        del dataset

        self.length = len(self.dataset)
        print(f"data scale: {self.length}")
        # TODO: enable bucket training
        self.enable_bucket = enable_bucket
        self.text_drop_ratio = text_drop_ratio
        self.video_length_drop_start = video_length_drop_start
        self.video_length_drop_end = video_length_drop_end

        # Video params
        self.video_sample_stride    = video_sample_stride
        self.video_sample_n_frames  = video_sample_n_frames
        video_sample_size = tuple(video_sample_size) if not isinstance(video_sample_size, int) else (video_sample_size, video_sample_size)
        self.video_transforms = transforms.Compose(
            [
                transforms.Resize(video_sample_size[0]),
                transforms.CenterCrop(video_sample_size),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )

        # Image params
        self.image_sample_size  = tuple(image_sample_size) if not isinstance(image_sample_size, int) else (image_sample_size, image_sample_size)
        self.image_transforms   = transforms.Compose([
            transforms.Resize(min(self.image_sample_size)),
            transforms.CenterCrop(self.image_sample_size),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
        ])
    
    def get_batch(self, idx):
        data_info = self.dataset[idx % len(self.dataset)]
        
        if data_info.get('type', 'image')=='video':
            video_id, text = data_info['file_path'], data_info['text']

            if self.data_root is None:
                video_dir = video_id
            else:
                video_dir = os.path.join(self.data_root, video_id)

            with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
                min_sample_n_frames = min(
                    self.video_sample_n_frames, 
                    int(len(video_reader) * (self.video_length_drop_end - self.video_length_drop_start))
                )
                if min_sample_n_frames == 0:
                    raise ValueError(f"No Frames in video.")

                video_length = int(self.video_length_drop_end * len(video_reader))
                clip_length = min(video_length, (min_sample_n_frames - 1) * self.video_sample_stride + 1)
                start_idx   = random.randint(int(self.video_length_drop_start * video_length), video_length - clip_length)
                batch_index = np.linspace(start_idx, start_idx + clip_length - 1, min_sample_n_frames, dtype=int)

                try:
                    sample_args = (video_reader, batch_index)
                    pixel_values = func_timeout(
                        VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
                    )
                except FunctionTimedOut:
                    raise ValueError(f"Read {idx} timeout.")
                except Exception as e:
                    raise ValueError(f"Failed to extract frames from video. Error is {e}.")

                if not self.enable_bucket:
                    pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous()
                    pixel_values = pixel_values / 255.
                    del video_reader
                else:
                    pixel_values = pixel_values

                if not self.enable_bucket:
                    pixel_values = self.video_transforms(pixel_values)
                
                # Random use no text generation
                if random.random() < self.text_drop_ratio:
                    text = ''
            return pixel_values, text, 'video'
        else:
            image_path, text = data_info['file_path'], data_info['text']
            if self.data_root is not None:
                image_path = os.path.join(self.data_root, image_path)
            image = Image.open(image_path).convert('RGB')
            if not self.enable_bucket:
                image = self.image_transforms(image).unsqueeze(0)
            else:
                image = np.expand_dims(np.array(image), 0)
            if random.random() < self.text_drop_ratio:
                text = ''
            return image, text, 'image'

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        data_info = self.dataset[idx % len(self.dataset)]
        data_type = data_info.get('type', 'image')
        while True:
            sample = {}
            try:
                data_info_local = self.dataset[idx % len(self.dataset)]
                data_type_local = data_info_local.get('type', 'image')
                if data_type_local != data_type:
                    raise ValueError("data_type_local != data_type")

                pixel_values, name, data_type = self.get_batch(idx)
                sample["pixel_values"] = pixel_values
                sample["text"] = name
                sample["data_type"] = data_type
                sample["idx"] = idx
                
                if len(sample) > 0:
                    break
            except Exception as e:
                print(e, self.dataset[idx % len(self.dataset)])
                idx = random.randint(0, self.length-1)
        return sample

if __name__ == "__main__":
    dataset = ImageVideoDataset(
        ann_path="test.json"
    )
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=16)
    for idx, batch in enumerate(dataloader):
        print(batch["pixel_values"].shape, len(batch["text"]))