File size: 28,557 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union

import torch
from torch import Tensor
from typing_extensions import Literal

from torchmetrics.functional.classification.precision_recall_curve import (
    _binary_clf_curve,
    _binary_precision_recall_curve_arg_validation,
    _binary_precision_recall_curve_format,
    _binary_precision_recall_curve_tensor_validation,
    _binary_precision_recall_curve_update,
    _multiclass_precision_recall_curve_arg_validation,
    _multiclass_precision_recall_curve_format,
    _multiclass_precision_recall_curve_tensor_validation,
    _multiclass_precision_recall_curve_update,
    _multilabel_precision_recall_curve_arg_validation,
    _multilabel_precision_recall_curve_format,
    _multilabel_precision_recall_curve_tensor_validation,
    _multilabel_precision_recall_curve_update,
)
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.compute import _safe_divide, interp
from torchmetrics.utilities.enums import ClassificationTask


def _binary_roc_compute(
    state: Union[Tensor, tuple[Tensor, Tensor]],
    thresholds: Optional[Tensor],
    pos_label: int = 1,
) -> tuple[Tensor, Tensor, Tensor]:
    if isinstance(state, Tensor) and thresholds is not None:
        tps = state[:, 1, 1]
        fps = state[:, 0, 1]
        fns = state[:, 1, 0]
        tns = state[:, 0, 0]
        tpr = _safe_divide(tps, tps + fns).flip(0)
        fpr = _safe_divide(fps, fps + tns).flip(0)
        thres = thresholds.flip(0)
    else:
        fps, tps, thres = _binary_clf_curve(preds=state[0], target=state[1], pos_label=pos_label)
        # Add an extra threshold position to make sure that the curve starts at (0, 0)
        tps = torch.cat([torch.zeros(1, dtype=tps.dtype, device=tps.device), tps])
        fps = torch.cat([torch.zeros(1, dtype=fps.dtype, device=fps.device), fps])
        thres = torch.cat([torch.ones(1, dtype=thres.dtype, device=thres.device), thres])

        if fps[-1] <= 0:
            rank_zero_warn(
                "No negative samples in targets, false positive value should be meaningless."
                " Returning zero tensor in false positive score",
                UserWarning,
            )
            fpr = torch.zeros_like(thres)
        else:
            fpr = fps / fps[-1]

        if tps[-1] <= 0:
            rank_zero_warn(
                "No positive samples in targets, true positive value should be meaningless."
                " Returning zero tensor in true positive score",
                UserWarning,
            )
            tpr = torch.zeros_like(thres)
        else:
            tpr = tps / tps[-1]

    return fpr, tpr, thres


def binary_roc(
    preds: Tensor,
    target: Tensor,
    thresholds: Optional[Union[int, list[float], Tensor]] = None,
    ignore_index: Optional[int] = None,
    validate_args: bool = True,
) -> tuple[Tensor, Tensor, Tensor]:
    r"""Compute the Receiver Operating Characteristic (ROC) for binary tasks.

    The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at
    different thresholds, such that the tradeoff between the two values can be seen.

    Accepts the following input tensors:

    - ``preds`` (float tensor): ``(N, ...)``. Preds should be a tensor containing probabilities or logits for each
      observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
      sigmoid per element.
    - ``target`` (int tensor): ``(N, ...)``. Target should be a tensor containing ground truth labels, and therefore
      only contain {0,1} values (except if `ignore_index` is specified). The value 1 always encodes the positive class.

    Additional dimension ``...`` will be flattened into the batch dimension.

    The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
    that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
    non-binned  version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
    argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
    size :math:`\mathcal{O}(n_{thresholds})` (constant memory).

    Note that outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which
    are sorted in reversed order during their calculation, such that they are monotome increasing.

    Args:
        preds: Tensor with predictions
        target: Tensor with true labels
        thresholds:
            Can be one of:

            - If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
              all the data. Most accurate but also most memory consuming approach.
            - If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
              0 to 1 as bins for the calculation.
            - If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
            - If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
              bins for the calculation.

        ignore_index:
            Specifies a target value that is ignored and does not contribute to the metric calculation
        validate_args: bool indicating if input arguments and tensors should be validated for correctness.
            Set to ``False`` for faster computations.

    Returns:
        (tuple): a tuple of 3 tensors containing:

        - fpr: an 1d tensor of size (n_thresholds+1, ) with false positive rate values
        - tpr: an 1d tensor of size (n_thresholds+1, ) with true positive rate values
        - thresholds: an 1d tensor of size (n_thresholds, ) with decreasing threshold values

    Example:
        >>> from torchmetrics.functional.classification import binary_roc
        >>> preds = torch.tensor([0, 0.5, 0.7, 0.8])
        >>> target = torch.tensor([0, 1, 1, 0])
        >>> binary_roc(preds, target, thresholds=None)  # doctest: +NORMALIZE_WHITESPACE
        (tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]),
         tensor([0.0000, 0.0000, 0.5000, 1.0000, 1.0000]),
         tensor([1.0000, 0.8000, 0.7000, 0.5000, 0.0000]))
        >>> binary_roc(preds, target, thresholds=5)  # doctest: +NORMALIZE_WHITESPACE
        (tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]),
         tensor([0., 0., 1., 1., 1.]),
         tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))

    """
    if validate_args:
        _binary_precision_recall_curve_arg_validation(thresholds, ignore_index)
        _binary_precision_recall_curve_tensor_validation(preds, target, ignore_index)
    preds, target, thresholds = _binary_precision_recall_curve_format(preds, target, thresholds, ignore_index)
    state = _binary_precision_recall_curve_update(preds, target, thresholds)
    return _binary_roc_compute(state, thresholds)


def _multiclass_roc_compute(
    state: Union[Tensor, tuple[Tensor, Tensor]],
    num_classes: int,
    thresholds: Optional[Tensor],
    average: Optional[Literal["micro", "macro"]] = None,
) -> Union[tuple[Tensor, Tensor, Tensor], tuple[List[Tensor], List[Tensor], List[Tensor]]]:
    if average == "micro":
        return _binary_roc_compute(state, thresholds, pos_label=1)

    if isinstance(state, Tensor) and thresholds is not None:
        tps = state[:, :, 1, 1]
        fps = state[:, :, 0, 1]
        fns = state[:, :, 1, 0]
        tns = state[:, :, 0, 0]
        tpr = _safe_divide(tps, tps + fns).flip(0).T
        fpr = _safe_divide(fps, fps + tns).flip(0).T
        thres = thresholds.flip(0)
        tensor_state = True
    else:
        fpr_list, tpr_list, thres_list = [], [], []
        for i in range(num_classes):
            res = _binary_roc_compute((state[0][:, i], state[1]), thresholds=None, pos_label=i)
            fpr_list.append(res[0])
            tpr_list.append(res[1])
            thres_list.append(res[2])
        tensor_state = False

    if average == "macro":
        thres = thres.repeat(num_classes) if tensor_state else torch.cat(thres_list, dim=0)
        thres = thres.sort(descending=True).values
        mean_fpr = fpr.flatten() if tensor_state else torch.cat(fpr_list, dim=0)
        mean_fpr = mean_fpr.sort().values
        mean_tpr = torch.zeros_like(mean_fpr)
        for i in range(num_classes):
            mean_tpr += interp(
                mean_fpr, fpr[i] if tensor_state else fpr_list[i], tpr[i] if tensor_state else tpr_list[i]
            )
        mean_tpr /= num_classes
        return mean_fpr, mean_tpr, thres

    if tensor_state:
        return fpr, tpr, thres
    return fpr_list, tpr_list, thres_list


def multiclass_roc(
    preds: Tensor,
    target: Tensor,
    num_classes: int,
    thresholds: Optional[Union[int, list[float], Tensor]] = None,
    average: Optional[Literal["micro", "macro"]] = None,
    ignore_index: Optional[int] = None,
    validate_args: bool = True,
) -> Union[tuple[Tensor, Tensor, Tensor], tuple[List[Tensor], List[Tensor], List[Tensor]]]:
    r"""Compute the Receiver Operating Characteristic (ROC) for multiclass tasks.

    The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at
    different thresholds, such that the tradeoff between the two values can be seen.

    Accepts the following input tensors:

    - ``preds`` (float tensor): ``(N, C, ...)``. Preds should be a tensor containing probabilities or logits for each
      observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
      softmax per sample.
    - ``target`` (int tensor): ``(N, ...)``. Target should be a tensor containing ground truth labels, and therefore
      only contain values in the [0, n_classes-1] range (except if `ignore_index` is specified).

    Additional dimension ``...`` will be flattened into the batch dimension.

    The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
    that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
    non-binned  version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
    argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
    size :math:`\mathcal{O}(n_{thresholds} \times n_{classes})` (constant memory).

    Note that outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which
    are sorted in reversed order during their calculation, such that they are monotome increasing.

    Args:
        preds: Tensor with predictions
        target: Tensor with true labels
        num_classes: Integer specifying the number of classes
        thresholds:
            Can be one of:

            - If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
              all the data. Most accurate but also most memory consuming approach.
            - If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
              0 to 1 as bins for the calculation.
            - If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
            - If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
              bins for the calculation.

        average:
            If aggregation of curves should be applied. By default, the curves are not aggregated and a curve for
            each class is returned. If `average` is set to ``"micro"``, the metric will aggregate the curves by one hot
            encoding the targets and flattening the predictions, considering all classes jointly as a binary problem.
            If `average` is set to ``"macro"``, the metric will aggregate the curves by first interpolating the curves
            from each class at a combined set of thresholds and then average over the classwise interpolated curves.
            See `averaging curve objects`_ for more info on the different averaging methods.
        ignore_index:
            Specifies a target value that is ignored and does not contribute to the metric calculation
        validate_args: bool indicating if input arguments and tensors should be validated for correctness.
            Set to ``False`` for faster computations.

    Returns:
        (tuple): a tuple of either 3 tensors or 3 lists containing

        - fpr: if `thresholds=None` a list for each class is returned with an 1d tensor of size (n_thresholds+1, )
          with false positive rate values (length may differ between classes). If `thresholds` is set to something else,
          then a single 2d tensor of size (n_classes, n_thresholds+1) with false positive rate values is returned.
        - tpr: if `thresholds=None` a list for each class is returned with an 1d tensor of size (n_thresholds+1, )
          with true positive rate values (length may differ between classes). If `thresholds` is set to something else,
          then a single 2d tensor of size (n_classes, n_thresholds+1) with true positive rate values is returned.
        - thresholds: if `thresholds=None` a list for each class is returned with an 1d tensor of size (n_thresholds, )
          with decreasing threshold values (length may differ between classes). If `threshold` is set to something else,
          then a single 1d tensor of size (n_thresholds, ) is returned with shared threshold values for all classes.

    Example:
        >>> from torchmetrics.functional.classification import multiclass_roc
        >>> preds = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
        ...                       [0.05, 0.75, 0.05, 0.05, 0.05],
        ...                       [0.05, 0.05, 0.75, 0.05, 0.05],
        ...                       [0.05, 0.05, 0.05, 0.75, 0.05]])
        >>> target = torch.tensor([0, 1, 3, 2])
        >>> fpr, tpr, thresholds = multiclass_roc(
        ...    preds, target, num_classes=5, thresholds=None
        ... )
        >>> fpr  # doctest: +NORMALIZE_WHITESPACE
        [tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]),
         tensor([0.0000, 0.3333, 1.0000]), tensor([0., 1.])]
        >>> tpr
        [tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0., 0.])]
        >>> thresholds  # doctest: +NORMALIZE_WHITESPACE
        [tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]),
         tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.7500, 0.0500]), tensor([1.0000, 0.0500])]
        >>> multiclass_roc(
        ...     preds, target, num_classes=5, thresholds=5
        ... )  # doctest: +NORMALIZE_WHITESPACE
        (tensor([[0.0000, 0.0000, 0.0000, 0.0000, 1.0000],
                 [0.0000, 0.0000, 0.0000, 0.0000, 1.0000],
                 [0.0000, 0.3333, 0.3333, 0.3333, 1.0000],
                 [0.0000, 0.3333, 0.3333, 0.3333, 1.0000],
                 [0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]),
         tensor([[0., 1., 1., 1., 1.],
                 [0., 1., 1., 1., 1.],
                 [0., 0., 0., 0., 1.],
                 [0., 0., 0., 0., 1.],
                 [0., 0., 0., 0., 0.]]),
         tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))

    """
    if validate_args:
        _multiclass_precision_recall_curve_arg_validation(num_classes, thresholds, ignore_index, average)
        _multiclass_precision_recall_curve_tensor_validation(preds, target, num_classes, ignore_index)
    preds, target, thresholds = _multiclass_precision_recall_curve_format(
        preds,
        target,
        num_classes,
        thresholds,
        ignore_index,
        average,
    )
    state = _multiclass_precision_recall_curve_update(preds, target, num_classes, thresholds, average)
    return _multiclass_roc_compute(state, num_classes, thresholds, average)


def _multilabel_roc_compute(
    state: Union[Tensor, tuple[Tensor, Tensor]],
    num_labels: int,
    thresholds: Optional[Tensor],
    ignore_index: Optional[int] = None,
) -> Union[tuple[Tensor, Tensor, Tensor], tuple[List[Tensor], List[Tensor], List[Tensor]]]:
    if isinstance(state, Tensor) and thresholds is not None:
        tps = state[:, :, 1, 1]
        fps = state[:, :, 0, 1]
        fns = state[:, :, 1, 0]
        tns = state[:, :, 0, 0]
        tpr = _safe_divide(tps, tps + fns).flip(0).T
        fpr = _safe_divide(fps, fps + tns).flip(0).T
        thres = thresholds.flip(0)
    else:
        fpr, tpr, thres = [], [], []  # type: ignore[assignment]
        for i in range(num_labels):
            preds = state[0][:, i]
            target = state[1][:, i]
            if ignore_index is not None:
                idx = target == ignore_index
                preds = preds[~idx]
                target = target[~idx]
            res = _binary_roc_compute((preds, target), thresholds=None, pos_label=1)
            fpr.append(res[0])
            tpr.append(res[1])
            thres.append(res[2])
    return fpr, tpr, thres


def multilabel_roc(
    preds: Tensor,
    target: Tensor,
    num_labels: int,
    thresholds: Optional[Union[int, list[float], Tensor]] = None,
    ignore_index: Optional[int] = None,
    validate_args: bool = True,
) -> Union[tuple[Tensor, Tensor, Tensor], tuple[List[Tensor], List[Tensor], List[Tensor]]]:
    r"""Compute the Receiver Operating Characteristic (ROC) for multilabel tasks.

    The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at
    different thresholds, such that the tradeoff between the two values can be seen.

    Accepts the following input tensors:

    - ``preds`` (float tensor): ``(N, C, ...)``. Preds should be a tensor containing probabilities or logits for each
      observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
      sigmoid per element.
    - ``target`` (int tensor): ``(N, C, ...)``. Target should be a tensor containing ground truth labels, and therefore
      only contain {0,1} values (except if `ignore_index` is specified).

    Additional dimension ``...`` will be flattened into the batch dimension.

    The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
    that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
    non-binned  version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
    argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
    size :math:`\mathcal{O}(n_{thresholds} \times n_{labels})` (constant memory).

    Note that outputted thresholds will be in reversed order to ensure that they corresponds to both fpr and tpr which
    are sorted in reversed order during their calculation, such that they are monotome increasing.

    Args:
        preds: Tensor with predictions
        target: Tensor with true labels
        num_labels: Integer specifying the number of labels
        thresholds:
            Can be one of:

            - If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
              all the data. Most accurate but also most memory consuming approach.
            - If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
              0 to 1 as bins for the calculation.
            - If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
            - If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
              bins for the calculation.

        ignore_index:
            Specifies a target value that is ignored and does not contribute to the metric calculation
        validate_args: bool indicating if input arguments and tensors should be validated for correctness.
            Set to ``False`` for faster computations.

    Returns:
        (tuple): a tuple of either 3 tensors or 3 lists containing

        - fpr: if `thresholds=None` a list for each label is returned with an 1d tensor of size (n_thresholds+1, )
          with false positive rate values (length may differ between labels). If `thresholds` is set to something else,
          then a single 2d tensor of size (n_labels, n_thresholds+1) with false positive rate values is returned.
        - tpr: if `thresholds=None` a list for each label is returned with an 1d tensor of size (n_thresholds+1, )
          with true positive rate values (length may differ between labels). If `thresholds` is set to something else,
          then a single 2d tensor of size (n_labels, n_thresholds+1) with true positive rate values is returned.
        - thresholds: if `thresholds=None` a list for each label is returned with an 1d tensor of size (n_thresholds, )
          with decreasing threshold values (length may differ between labels). If `threshold` is set to something else,
          then a single 1d tensor of size (n_thresholds, ) is returned with shared threshold values for all labels.

    Example:
        >>> from torchmetrics.functional.classification import multilabel_roc
        >>> preds = torch.tensor([[0.75, 0.05, 0.35],
        ...                       [0.45, 0.75, 0.05],
        ...                       [0.05, 0.55, 0.75],
        ...                       [0.05, 0.65, 0.05]])
        >>> target = torch.tensor([[1, 0, 1],
        ...                        [0, 0, 0],
        ...                        [0, 1, 1],
        ...                        [1, 1, 1]])
        >>> fpr, tpr, thresholds = multilabel_roc(
        ...    preds, target, num_labels=3, thresholds=None
        ... )
        >>> fpr  # doctest: +NORMALIZE_WHITESPACE
        [tensor([0.0000, 0.0000, 0.5000, 1.0000]),
         tensor([0.0000, 0.5000, 0.5000, 0.5000, 1.0000]),
         tensor([0., 0., 0., 1.])]
        >>> tpr  # doctest: +NORMALIZE_WHITESPACE
        [tensor([0.0000, 0.5000, 0.5000, 1.0000]),
         tensor([0.0000, 0.0000, 0.5000, 1.0000, 1.0000]),
         tensor([0.0000, 0.3333, 0.6667, 1.0000])]
        >>> thresholds  # doctest: +NORMALIZE_WHITESPACE
        [tensor([1.0000, 0.7500, 0.4500, 0.0500]),
         tensor([1.0000, 0.7500, 0.6500, 0.5500, 0.0500]),
         tensor([1.0000, 0.7500, 0.3500, 0.0500])]
        >>> multilabel_roc(
        ...     preds, target, num_labels=3, thresholds=5
        ... )  # doctest: +NORMALIZE_WHITESPACE
        (tensor([[0.0000, 0.0000, 0.0000, 0.5000, 1.0000],
                 [0.0000, 0.5000, 0.5000, 0.5000, 1.0000],
                 [0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]),
         tensor([[0.0000, 0.5000, 0.5000, 0.5000, 1.0000],
                 [0.0000, 0.0000, 1.0000, 1.0000, 1.0000],
                 [0.0000, 0.3333, 0.3333, 0.6667, 1.0000]]),
         tensor([1.0000, 0.7500, 0.5000, 0.2500, 0.0000]))

    """
    if validate_args:
        _multilabel_precision_recall_curve_arg_validation(num_labels, thresholds, ignore_index)
        _multilabel_precision_recall_curve_tensor_validation(preds, target, num_labels, ignore_index)
    preds, target, thresholds = _multilabel_precision_recall_curve_format(
        preds, target, num_labels, thresholds, ignore_index
    )
    state = _multilabel_precision_recall_curve_update(preds, target, num_labels, thresholds)
    return _multilabel_roc_compute(state, num_labels, thresholds, ignore_index)


def roc(
    preds: Tensor,
    target: Tensor,
    task: Literal["binary", "multiclass", "multilabel"],
    thresholds: Optional[Union[int, list[float], Tensor]] = None,
    num_classes: Optional[int] = None,
    num_labels: Optional[int] = None,
    average: Optional[Literal["micro", "macro"]] = None,
    ignore_index: Optional[int] = None,
    validate_args: bool = True,
) -> Union[tuple[Tensor, Tensor, Tensor], tuple[List[Tensor], List[Tensor], List[Tensor]]]:
    r"""Compute the Receiver Operating Characteristic (ROC).

    The curve consist of multiple pairs of true positive rate (TPR) and false positive rate (FPR) values evaluated at
    different thresholds, such that the tradeoff between the two values can be seen.

    This function is a simple wrapper to get the task specific versions of this metric, which is done by setting the
    ``task`` argument to either ``'binary'``, ``'multiclass'`` or ``multilabel``. See the documentation of
    :func:`~torchmetrics.functional.classification.binary_roc`,
    :func:`~torchmetrics.functional.classification.multiclass_roc` and
    :func:`~torchmetrics.functional.classification.multilabel_roc` for the specific details of each argument
    influence and examples.

    Legacy Example:
        >>> pred = torch.tensor([0.0, 1.0, 2.0, 3.0])
        >>> target = torch.tensor([0, 1, 1, 1])
        >>> fpr, tpr, thresholds = roc(pred, target, task='binary')
        >>> fpr
        tensor([0., 0., 0., 0., 1.])
        >>> tpr
        tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000])
        >>> thresholds
        tensor([1.0000, 0.9526, 0.8808, 0.7311, 0.5000])

        >>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05],
        ...                      [0.05, 0.75, 0.05, 0.05],
        ...                      [0.05, 0.05, 0.75, 0.05],
        ...                      [0.05, 0.05, 0.05, 0.75]])
        >>> target = torch.tensor([0, 1, 3, 2])
        >>> fpr, tpr, thresholds = roc(pred, target, task='multiclass', num_classes=4)
        >>> fpr
        [tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]), tensor([0.0000, 0.3333, 1.0000])]
        >>> tpr
        [tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0., 0., 1.])]
        >>> thresholds
        [tensor([1.0000, 0.7500, 0.0500]),
         tensor([1.0000, 0.7500, 0.0500]),
         tensor([1.0000, 0.7500, 0.0500]),
         tensor([1.0000, 0.7500, 0.0500])]

        >>> pred = torch.tensor([[0.8191, 0.3680, 0.1138],
        ...                      [0.3584, 0.7576, 0.1183],
        ...                      [0.2286, 0.3468, 0.1338],
        ...                      [0.8603, 0.0745, 0.1837]])
        >>> target = torch.tensor([[1, 1, 0], [0, 1, 0], [0, 0, 0], [0, 1, 1]])
        >>> fpr, tpr, thresholds = roc(pred, target, task='multilabel', num_labels=3)
        >>> fpr
        [tensor([0.0000, 0.3333, 0.3333, 0.6667, 1.0000]),
         tensor([0., 0., 0., 1., 1.]),
         tensor([0.0000, 0.0000, 0.3333, 0.6667, 1.0000])]
        >>> tpr
        [tensor([0., 0., 1., 1., 1.]), tensor([0.0000, 0.3333, 0.6667, 0.6667, 1.0000]), tensor([0., 1., 1., 1., 1.])]
        >>> thresholds
        [tensor([1.0000, 0.8603, 0.8191, 0.3584, 0.2286]),
         tensor([1.0000, 0.7576, 0.3680, 0.3468, 0.0745]),
         tensor([1.0000, 0.1837, 0.1338, 0.1183, 0.1138])]

    """
    task = ClassificationTask.from_str(task)
    if task == ClassificationTask.BINARY:
        return binary_roc(preds, target, thresholds, ignore_index, validate_args)
    if task == ClassificationTask.MULTICLASS:
        if not isinstance(num_classes, int):
            raise ValueError(f"`num_classes` is expected to be `int` but `{type(num_classes)} was passed.`")
        return multiclass_roc(preds, target, num_classes, thresholds, average, ignore_index, validate_args)
    if task == ClassificationTask.MULTILABEL:
        if not isinstance(num_labels, int):
            raise ValueError(f"`num_labels` is expected to be `int` but `{type(num_labels)} was passed.`")
        return multilabel_roc(preds, target, num_labels, thresholds, ignore_index, validate_args)
    raise ValueError(f"Task {task} not supported, expected one of {ClassificationTask}.")