File size: 52,835 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import io
import json
from collections.abc import Sequence
from types import ModuleType
from typing import Any, Callable, ClassVar, List, Optional, Union

import numpy as np
import torch
from lightning_utilities import apply_to_collection
from torch import Tensor
from torch import distributed as dist
from typing_extensions import Literal

from torchmetrics.detection.helpers import _fix_empty_tensors, _input_validator, _validate_iou_type_arg
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.imports import (
    _FASTER_COCO_EVAL_AVAILABLE,
    _MATPLOTLIB_AVAILABLE,
    _PYCOCOTOOLS_AVAILABLE,
    _TORCHVISION_AVAILABLE,
)
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["MeanAveragePrecision.plot"]

if not (_PYCOCOTOOLS_AVAILABLE or _FASTER_COCO_EVAL_AVAILABLE):
    __doctest_skip__ = [
        "MeanAveragePrecision.plot",
        "MeanAveragePrecision",
        "MeanAveragePrecision.tm_to_coco",
        "MeanAveragePrecision.coco_to_tm",
    ]


def _load_backend_tools(backend: Literal["pycocotools", "faster_coco_eval"]) -> tuple[object, object, ModuleType]:
    """Load the backend tools for the given backend."""
    if backend == "pycocotools":
        if not _PYCOCOTOOLS_AVAILABLE:
            raise ModuleNotFoundError(
                "Backend `pycocotools` in metric `MeanAveragePrecision`  metric requires that `pycocotools` is"
                " installed. Please install with `pip install pycocotools` or `pip install torchmetrics[detection]`"
            )
        import pycocotools.mask as mask_utils
        from pycocotools.coco import COCO
        from pycocotools.cocoeval import COCOeval

        return COCO, COCOeval, mask_utils

    if not _FASTER_COCO_EVAL_AVAILABLE:
        raise ModuleNotFoundError(
            "Backend `faster_coco_eval` in metric `MeanAveragePrecision`  metric requires that `faster-coco-eval` is"
            " installed. Please install with `pip install faster-coco-eval`."
        )
    from faster_coco_eval import COCO
    from faster_coco_eval import COCOeval_faster as COCOeval
    from faster_coco_eval.core import mask as mask_utils

    return COCO, COCOeval, mask_utils


class MeanAveragePrecision(Metric):
    r"""Compute the `Mean-Average-Precision (mAP) and Mean-Average-Recall (mAR)`_ for object detection predictions.

    .. math::
        \text{mAP} = \frac{1}{n} \sum_{i=1}^{n} AP_i

    where :math:`AP_i` is the average precision for class :math:`i` and :math:`n` is the number of classes. The average
    precision is defined as the area under the precision-recall curve. For object detection the recall and precision are
    defined based on the intersection of union (IoU) between the predicted bounding boxes and the ground truth bounding
    boxes e.g. if two boxes have an IoU > t (with t being some threshold) they are considered a match and therefore
    considered a true positive. The precision is then defined as the number of true positives divided by the number of
    all detected boxes and the recall is defined as the number of true positives divided by the number of all ground
    boxes.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
      (each dictionary corresponds to a single image). Parameters that should be provided per dict

        - ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes``
          detection boxes of the format specified in the constructor.
          By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates, but can be changed
          using the ``box_format`` parameter. Only required when `iou_type="bbox"`.
        - ``scores`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes)`` containing detection scores for the
          boxes.
        - ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed detection
          classes for the boxes.
        - ``masks`` (:class:`~torch.Tensor`): boolean tensor of shape ``(num_boxes, image_height, image_width)``
          containing boolean masks. Only required when `iou_type="segm"`.

    - ``target`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
      (each dictionary corresponds to a single image). Parameters that should be provided per dict:

        - ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes`` ground
          truth boxes of the format specified in the constructor. only required when `iou_type="bbox"`.
          By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
        - ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed ground truth
          classes for the boxes.
        - ``masks`` (:class:`~torch.Tensor`): boolean tensor of shape ``(num_boxes, image_height, image_width)``
          containing boolean masks. Only required when `iou_type="segm"`.
        - ``iscrowd`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0/1 values indicating
          whether the bounding box/masks indicate a crowd of objects. Value is optional, and if not provided it will
          automatically be set to 0.
        - ``area`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes)`` containing the area of the object.
          Value is optional, and if not provided will be automatically calculated based on the bounding box/masks
          provided. Only affects which samples contribute to the `map_small`, `map_medium`, `map_large` values

    As output of ``forward`` and ``compute`` the metric returns the following output:

    - ``map_dict``: A dictionary containing the following key-values:

        - map: (:class:`~torch.Tensor`), global mean average precision which by default is defined as mAP50-95 e.g. the
          mean average precision for IoU thresholds 0.50, 0.55, 0.60, ..., 0.95 averaged over all classes and areas. If
          the IoU thresholds are changed this value will be calculated with the new thresholds.
        - map_small: (:class:`~torch.Tensor`), mean average precision for small objects (area < 32^2 pixels)
        - map_medium:(:class:`~torch.Tensor`), mean average precision for medium objects (32^2  pixels < area < 96^2
          pixels)
        - map_large: (:class:`~torch.Tensor`), mean average precision for large objects (area > 96^2 pixels)
        - mar_{mdt[0]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[0]` (default 1)
          detection per image
        - mar_{mdt[1]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[1]` (default 10)
          detection per image
        - mar_{mdt[1]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[2]` (default 100)
          detection per image
        - mar_small: (:class:`~torch.Tensor`), mean average recall for small objects (area < 32^2  pixels)
        - mar_medium: (:class:`~torch.Tensor`), mean average recall for medium objects (32^2 pixels < area < 96^2
          pixels)
        - mar_large: (:class:`~torch.Tensor`), mean average recall for large objects (area > 96^2  pixels)
        - map_50: (:class:`~torch.Tensor`) (-1 if 0.5 not in the list of iou thresholds), mean average precision at
          IoU=0.50
        - map_75: (:class:`~torch.Tensor`) (-1 if 0.75 not in the list of iou thresholds), mean average precision at
          IoU=0.75
        - map_per_class: (:class:`~torch.Tensor`) (-1 if class metrics are disabled), mean average precision per
          observed class
        - mar_{mdt[2]}_per_class: (:class:`~torch.Tensor`) (-1 if class metrics are disabled), mean average recall for
          `max_detection_thresholds[2]` (default 100) detections per image per observed class
        - classes (:class:`~torch.Tensor`), list of all observed classes

    For an example on how to use this metric check the `torchmetrics mAP example`_.

    .. attention::
        The ``map`` score is calculated with @[ IoU=self.iou_thresholds | area=all | max_dets=max_detection_thresholds ]
        e.g. the mean average precision for IoU thresholds 0.50, 0.55, 0.60, ..., 0.95 averaged over all classes and
        all areas and all max detections per image. If the IoU thresholds are changed this value will be calculated with
        the new thresholds.
        **Caution:** If the initialization parameters are changed, dictionary keys for mAR can change as well.

    .. important::
        This metric supports, at the moment, two different backends for the evaluation. The default backend is
        ``"pycocotools"``, which either require the official `pycocotools`_ implementation or this
        `fork of pycocotools`_ to be installed. We recommend using the fork as it is better maintained and easily
        available to install via pip: `pip install pycocotools`. It is also this fork that will be installed if you
        install ``torchmetrics[detection]``. The second backend is the `faster-coco-eval`_ implementation, which can be
        installed with ``pip install faster-coco-eval``. This implementation is a maintained open-source implementation
        that is faster and corrects certain corner cases that the official implementation has. Our own testing has shown
        that the results are identical to the official implementation. Regardless of the backend we also require you to
        have `torchvision` version 0.8.0 or newer installed. Please install with ``pip install torchvision>=0.8`` or
        ``pip install torchmetrics[detection]``.

    Args:
        box_format:
            Input format of given boxes. Supported formats are:

                - 'xyxy': boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.
                - 'xywh' : boxes are represented via corner, width and height, x1, y2 being top left, w, h being
                  width and height. This is the default format used by pycoco and all input formats will be converted
                  to this.
                - 'cxcywh': boxes are represented via centre, width and height, cx, cy being center of box, w, h being
                  width and height.

        iou_type:
            Type of input (either masks or bounding-boxes) used for computing IOU. Supported IOU types are
            ``"bbox"`` or ``"segm"`` or both as a tuple.
        iou_thresholds:
            IoU thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0.5,...,0.95]``
            with step ``0.05``. Else provide a list of floats.
        rec_thresholds:
            Recall thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0,...,1]``
            with step ``0.01``. Else provide a list of floats.
        max_detection_thresholds:
            Thresholds on max detections per image. If set to `None` will use thresholds ``[1, 10, 100]``.
            Else, please provide a list of ints of length 3, which is the only supported length by both backends.
        class_metrics:
            Option to enable per-class metrics for mAP and mAR_100. Has a performance impact that scales linearly with
            the number of classes in the dataset.
        extended_summary:
            Option to enable extended summary with additional metrics including IOU, precision and recall. The output
            dictionary will contain the following extra key-values:

                - ``ious``: a dictionary containing the IoU values for every image/class combination e.g.
                  ``ious[(0,0)]`` would contain the IoU for image 0 and class 0. Each value is a tensor with shape
                  ``(n,m)`` where ``n`` is the number of detections and ``m`` is the number of ground truth boxes for
                  that image/class combination.
                - ``precision``: a tensor of shape ``(TxRxKxAxM)`` containing the precision values. Here ``T`` is the
                  number of IoU thresholds, ``R`` is the number of recall thresholds, ``K`` is the number of classes,
                  ``A`` is the number of areas and ``M`` is the number of max detections per image.
                - ``recall``: a tensor of shape ``(TxKxAxM)`` containing the recall values. Here ``T`` is the number of
                  IoU thresholds, ``K`` is the number of classes, ``A`` is the number of areas and ``M`` is the number
                  of max detections per image.
                - ``scores``: a tensor of shape ``(TxRxKxAxM)`` containing the confidence scores.  Here ``T`` is the
                  number of IoU thresholds, ``R`` is the number of recall thresholds, ``K`` is the number of classes,
                  ``A`` is the number of areas and ``M`` is the number of max detections per image.

        average:
            Method for averaging scores over labels. Choose between "``"macro"`` and ``"micro"``.
        backend:
            Backend to use for the evaluation. Choose between ``"pycocotools"`` and ``"faster_coco_eval"``.

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ModuleNotFoundError:
            If ``pycocotools`` is not installed
        ModuleNotFoundError:
            If ``torchvision`` is not installed or version installed is lower than 0.8.0
        ValueError:
            If ``box_format`` is not one of ``"xyxy"``, ``"xywh"`` or ``"cxcywh"``
        ValueError:
            If ``iou_type`` is not one of ``"bbox"`` or ``"segm"``
        ValueError:
            If ``iou_thresholds`` is not None or a list of floats
        ValueError:
            If ``rec_thresholds`` is not None or a list of floats
        ValueError:
            If ``max_detection_thresholds`` is not None or a list of ints
        ValueError:
            If ``class_metrics`` is not a boolean

    Example::

        Basic example for when `iou_type="bbox"`. In this case the ``boxes`` key is required in the input dictionaries,
        in addition to the ``scores`` and ``labels`` keys.

        >>> from torch import tensor
        >>> from torchmetrics.detection import MeanAveragePrecision
        >>> preds = [
        ...   dict(
        ...     boxes=tensor([[258.0, 41.0, 606.0, 285.0]]),
        ...     scores=tensor([0.536]),
        ...     labels=tensor([0]),
        ...   )
        ... ]
        >>> target = [
        ...   dict(
        ...     boxes=tensor([[214.0, 41.0, 562.0, 285.0]]),
        ...     labels=tensor([0]),
        ...   )
        ... ]
        >>> metric = MeanAveragePrecision(iou_type="bbox")
        >>> metric.update(preds, target)
        >>> from pprint import pprint
        >>> pprint(metric.compute())
        {'classes': tensor(0, dtype=torch.int32),
         'map': tensor(0.6000),
         'map_50': tensor(1.),
         'map_75': tensor(1.),
         'map_large': tensor(0.6000),
         'map_medium': tensor(-1.),
         'map_per_class': tensor(-1.),
         'map_small': tensor(-1.),
         'mar_1': tensor(0.6000),
         'mar_10': tensor(0.6000),
         'mar_100': tensor(0.6000),
         'mar_100_per_class': tensor(-1.),
         'mar_large': tensor(0.6000),
         'mar_medium': tensor(-1.),
         'mar_small': tensor(-1.)}

    Example::

        Basic example for when `iou_type="segm"`. In this case the ``masks`` key is required in the input dictionaries,
        in addition to the ``scores`` and ``labels`` keys.

        >>> from torch import tensor
        >>> from torchmetrics.detection import MeanAveragePrecision
        >>> mask_pred = [
        ...   [0, 0, 0, 0, 0],
        ...   [0, 0, 1, 1, 0],
        ...   [0, 0, 1, 1, 0],
        ...   [0, 0, 0, 0, 0],
        ...   [0, 0, 0, 0, 0],
        ... ]
        >>> mask_tgt = [
        ...   [0, 0, 0, 0, 0],
        ...   [0, 0, 1, 0, 0],
        ...   [0, 0, 1, 1, 0],
        ...   [0, 0, 1, 0, 0],
        ...   [0, 0, 0, 0, 0],
        ... ]
        >>> preds = [
        ...   dict(
        ...     masks=tensor([mask_pred], dtype=torch.bool),
        ...     scores=tensor([0.536]),
        ...     labels=tensor([0]),
        ...   )
        ... ]
        >>> target = [
        ...   dict(
        ...     masks=tensor([mask_tgt], dtype=torch.bool),
        ...     labels=tensor([0]),
        ...   )
        ... ]
        >>> metric = MeanAveragePrecision(iou_type="segm")
        >>> metric.update(preds, target)
        >>> from pprint import pprint
        >>> pprint(metric.compute())
        {'classes': tensor(0, dtype=torch.int32),
         'map': tensor(0.2000),
         'map_50': tensor(1.),
         'map_75': tensor(0.),
         'map_large': tensor(-1.),
         'map_medium': tensor(-1.),
         'map_per_class': tensor(-1.),
         'map_small': tensor(0.2000),
         'mar_1': tensor(0.2000),
         'mar_10': tensor(0.2000),
         'mar_100': tensor(0.2000),
         'mar_100_per_class': tensor(-1.),
         'mar_large': tensor(-1.),
         'mar_medium': tensor(-1.),
         'mar_small': tensor(0.2000)}

    """

    is_differentiable: bool = False
    higher_is_better: Optional[bool] = True
    full_state_update: bool = True
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    detection_box: List[Tensor]
    detection_mask: List[Tensor]
    detection_scores: List[Tensor]
    detection_labels: List[Tensor]
    groundtruth_box: List[Tensor]
    groundtruth_mask: List[Tensor]
    groundtruth_labels: List[Tensor]
    groundtruth_crowds: List[Tensor]
    groundtruth_area: List[Tensor]

    warn_on_many_detections: bool = True

    __jit_unused_properties__: ClassVar[list[str]] = [
        "is_differentiable",
        "higher_is_better",
        "plot_lower_bound",
        "plot_upper_bound",
        "plot_legend_name",
        "metric_state",
        "_update_called",
        # below is added for specifically for this metric
        "coco",
        "cocoeval",
        "mask_utils",
    ]

    def __init__(
        self,
        box_format: Literal["xyxy", "xywh", "cxcywh"] = "xyxy",
        iou_type: Union[Literal["bbox", "segm"], tuple[Literal["bbox", "segm"], ...]] = "bbox",
        iou_thresholds: Optional[list[float]] = None,
        rec_thresholds: Optional[list[float]] = None,
        max_detection_thresholds: Optional[list[int]] = None,
        class_metrics: bool = False,
        extended_summary: bool = False,
        average: Literal["macro", "micro"] = "macro",
        backend: Literal["pycocotools", "faster_coco_eval"] = "pycocotools",
        **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)

        if not (_PYCOCOTOOLS_AVAILABLE or _FASTER_COCO_EVAL_AVAILABLE):
            raise ModuleNotFoundError(
                "`MAP` metric requires that `pycocotools` or `faster-coco-eval` installed."
                " Please install with `pip install pycocotools` or `pip install faster-coco-eval` or"
                " `pip install torchmetrics[detection]`."
            )

        if not _TORCHVISION_AVAILABLE:
            raise ModuleNotFoundError(
                f"Metric `{self._iou_type}` requires that `torchvision` is installed."
                " Please install with `pip install torchmetrics[detection]`."
            )

        allowed_box_formats = ("xyxy", "xywh", "cxcywh")
        if box_format not in allowed_box_formats:
            raise ValueError(f"Expected argument `box_format` to be one of {allowed_box_formats} but got {box_format}")
        self.box_format = box_format

        self.iou_type = _validate_iou_type_arg(iou_type)

        if iou_thresholds is not None and not isinstance(iou_thresholds, list):
            raise ValueError(
                f"Expected argument `iou_thresholds` to either be `None` or a list of floats but got {iou_thresholds}"
            )
        self.iou_thresholds = iou_thresholds or torch.linspace(0.5, 0.95, round((0.95 - 0.5) / 0.05) + 1).tolist()

        if rec_thresholds is not None and not isinstance(rec_thresholds, list):
            raise ValueError(
                f"Expected argument `rec_thresholds` to either be `None` or a list of floats but got {rec_thresholds}"
            )
        self.rec_thresholds = rec_thresholds or torch.linspace(0.0, 1.00, round(1.00 / 0.01) + 1).tolist()

        if max_detection_thresholds is not None and not isinstance(max_detection_thresholds, list):
            raise ValueError(
                f"Expected argument `max_detection_thresholds` to either be `None` or a list of ints"
                f" but got {max_detection_thresholds}"
            )
        if max_detection_thresholds is not None and len(max_detection_thresholds) != 3:
            raise ValueError(
                "When providing a list of max detection thresholds it should have length 3."
                f" Got value {len(max_detection_thresholds)}"
            )
        max_det_threshold, _ = torch.sort(torch.tensor(max_detection_thresholds or [1, 10, 100], dtype=torch.int))
        self.max_detection_thresholds = max_det_threshold.tolist()

        if not isinstance(class_metrics, bool):
            raise ValueError("Expected argument `class_metrics` to be a boolean")
        self.class_metrics = class_metrics

        if not isinstance(extended_summary, bool):
            raise ValueError("Expected argument `extended_summary` to be a boolean")
        self.extended_summary = extended_summary

        if average not in ("macro", "micro"):
            raise ValueError(f"Expected argument `average` to be one of ('macro', 'micro') but got {average}")
        self.average = average

        if backend not in ("pycocotools", "faster_coco_eval"):
            raise ValueError(
                f"Expected argument `backend` to be one of ('pycocotools', 'faster_coco_eval') but got {backend}"
            )
        self.backend = backend

        self.add_state("detection_box", default=[], dist_reduce_fx=None)
        self.add_state("detection_mask", default=[], dist_reduce_fx=None)
        self.add_state("detection_scores", default=[], dist_reduce_fx=None)
        self.add_state("detection_labels", default=[], dist_reduce_fx=None)
        self.add_state("groundtruth_box", default=[], dist_reduce_fx=None)
        self.add_state("groundtruth_mask", default=[], dist_reduce_fx=None)
        self.add_state("groundtruth_labels", default=[], dist_reduce_fx=None)
        self.add_state("groundtruth_crowds", default=[], dist_reduce_fx=None)
        self.add_state("groundtruth_area", default=[], dist_reduce_fx=None)

    @property
    def coco(self) -> object:
        """Returns the coco module for the given backend, done in this way to make metric picklable."""
        coco, _, _ = _load_backend_tools(self.backend)
        return coco

    @property
    def cocoeval(self) -> object:
        """Returns the coco eval module for the given backend, done in this way to make metric picklable."""
        _, cocoeval, _ = _load_backend_tools(self.backend)
        return cocoeval

    @property
    def mask_utils(self) -> object:
        """Returns the mask utils object for the given backend, done in this way to make metric picklable."""
        _, _, mask_utils = _load_backend_tools(self.backend)
        return mask_utils

    def update(self, preds: list[dict[str, Tensor]], target: list[dict[str, Tensor]]) -> None:
        """Update metric state.

        Raises:
            ValueError:
                If ``preds`` is not of type (:class:`~List[Dict[str, Tensor]]`)
            ValueError:
                If ``target`` is not of type ``List[Dict[str, Tensor]]``
            ValueError:
                If ``preds`` and ``target`` are not of the same length
            ValueError:
                If any of ``preds.boxes``, ``preds.scores`` and ``preds.labels`` are not of the same length
            ValueError:
                If any of ``target.boxes`` and ``target.labels`` are not of the same length
            ValueError:
                If any box is not type float and of length 4
            ValueError:
                If any class is not type int and of length 1
            ValueError:
                If any score is not type float and of length 1

        """
        _input_validator(preds, target, iou_type=self.iou_type)

        for item in preds:
            bbox_detection, mask_detection = self._get_safe_item_values(item, warn=self.warn_on_many_detections)
            if bbox_detection is not None:
                self.detection_box.append(bbox_detection)
            if mask_detection is not None:
                self.detection_mask.append(mask_detection)  # type: ignore[arg-type]
            self.detection_labels.append(item["labels"])
            self.detection_scores.append(item["scores"])

        for item in target:
            bbox_groundtruth, mask_groundtruth = self._get_safe_item_values(item)
            if bbox_groundtruth is not None:
                self.groundtruth_box.append(bbox_groundtruth)
            if mask_groundtruth is not None:
                self.groundtruth_mask.append(mask_groundtruth)  # type: ignore[arg-type]
            self.groundtruth_labels.append(item["labels"])
            self.groundtruth_crowds.append(item.get("iscrowd", torch.zeros_like(item["labels"])))
            self.groundtruth_area.append(item.get("area", torch.zeros_like(item["labels"])))

    def compute(self) -> dict:
        """Computes the metric."""
        coco_preds, coco_target = self._get_coco_datasets(average=self.average)

        result_dict = {}
        with contextlib.redirect_stdout(io.StringIO()):
            for i_type in self.iou_type:
                prefix = "" if len(self.iou_type) == 1 else f"{i_type}_"
                if len(self.iou_type) > 1:
                    # the area calculation is different for bbox and segm and therefore to get the small, medium and
                    # large values correct we need to dynamically change the area attribute of the annotations
                    for anno in coco_preds.dataset["annotations"]:
                        anno["area"] = anno[f"area_{i_type}"]

                if len(coco_preds.imgs) == 0 or len(coco_target.imgs) == 0:
                    result_dict.update(self._coco_stats_to_tensor_dict(12 * [-1.0], prefix=prefix))
                else:
                    coco_eval = self.cocoeval(coco_target, coco_preds, iouType=i_type)  # type: ignore[operator]
                    coco_eval.params.iouThrs = np.array(self.iou_thresholds, dtype=np.float64)
                    coco_eval.params.recThrs = np.array(self.rec_thresholds, dtype=np.float64)
                    coco_eval.params.maxDets = self.max_detection_thresholds

                    coco_eval.evaluate()
                    coco_eval.accumulate()
                    coco_eval.summarize()
                    stats = coco_eval.stats
                    result_dict.update(self._coco_stats_to_tensor_dict(stats, prefix=prefix))

                    summary = {}
                    if self.extended_summary:
                        summary = {
                            f"{prefix}ious": apply_to_collection(
                                coco_eval.ious, np.ndarray, lambda x: torch.tensor(x, dtype=torch.float32)
                            ),
                            f"{prefix}precision": torch.tensor(coco_eval.eval["precision"]),
                            f"{prefix}recall": torch.tensor(coco_eval.eval["recall"]),
                            f"{prefix}scores": torch.tensor(coco_eval.eval["scores"]),
                        }
                    result_dict.update(summary)

                    # if class mode is enabled, evaluate metrics per class
                    if self.class_metrics:
                        # regardless of average method, reinitialize dataset to get rid of internal state which can
                        # lead to wrong results when evaluating per class
                        coco_preds, coco_target = self._get_coco_datasets(average="macro")
                        coco_eval = self.cocoeval(coco_target, coco_preds, iouType=i_type)  # type: ignore[operator]
                        coco_eval.params.iouThrs = np.array(self.iou_thresholds, dtype=np.float64)
                        coco_eval.params.recThrs = np.array(self.rec_thresholds, dtype=np.float64)
                        coco_eval.params.maxDets = self.max_detection_thresholds

                        map_per_class_list = []
                        mar_per_class_list = []
                        for class_id in self._get_classes():
                            coco_eval.params.catIds = [class_id]
                            with contextlib.redirect_stdout(io.StringIO()):
                                coco_eval.evaluate()
                                coco_eval.accumulate()
                                coco_eval.summarize()
                                class_stats = coco_eval.stats

                            map_per_class_list.append(torch.tensor([class_stats[0]]))
                            mar_per_class_list.append(torch.tensor([class_stats[8]]))

                        map_per_class_values = torch.tensor(map_per_class_list, dtype=torch.float32)
                        mar_per_class_values = torch.tensor(mar_per_class_list, dtype=torch.float32)
                    else:
                        map_per_class_values = torch.tensor([-1], dtype=torch.float32)
                        mar_per_class_values = torch.tensor([-1], dtype=torch.float32)
                    prefix = "" if len(self.iou_type) == 1 else f"{i_type}_"
                    result_dict.update(
                        {
                            f"{prefix}map_per_class": map_per_class_values,
                            f"{prefix}mar_{self.max_detection_thresholds[-1]}_per_class": mar_per_class_values,
                        },
                    )
        result_dict.update({"classes": torch.tensor(self._get_classes(), dtype=torch.int32)})

        return result_dict

    def _get_coco_datasets(self, average: Literal["macro", "micro"]) -> tuple[object, object]:
        """Returns the coco datasets for the target and the predictions."""
        if average == "micro":
            # for micro averaging we set everything to be the same class
            groundtruth_labels = apply_to_collection(self.groundtruth_labels, Tensor, lambda x: torch.zeros_like(x))
            detection_labels = apply_to_collection(self.detection_labels, Tensor, lambda x: torch.zeros_like(x))
        else:
            groundtruth_labels = self.groundtruth_labels
            detection_labels = self.detection_labels

        coco_target, coco_preds = self.coco(), self.coco()  # type: ignore[operator]

        coco_target.dataset = self._get_coco_format(
            labels=groundtruth_labels,
            boxes=self.groundtruth_box if len(self.groundtruth_box) > 0 else None,
            masks=self.groundtruth_mask if len(self.groundtruth_mask) > 0 else None,
            crowds=self.groundtruth_crowds,
            area=self.groundtruth_area,
            average=average,
        )
        coco_preds.dataset = self._get_coco_format(
            labels=detection_labels,
            boxes=self.detection_box if len(self.detection_box) > 0 else None,
            masks=self.detection_mask if len(self.detection_mask) > 0 else None,
            scores=self.detection_scores,
            average=average,
        )

        with contextlib.redirect_stdout(io.StringIO()):
            coco_target.createIndex()
            coco_preds.createIndex()

        return coco_preds, coco_target

    def _coco_stats_to_tensor_dict(self, stats: list[float], prefix: str) -> dict[str, Tensor]:
        """Converts the output of COCOeval.stats to a dict of tensors."""
        mdt = self.max_detection_thresholds
        return {
            f"{prefix}map": torch.tensor([stats[0]], dtype=torch.float32),
            f"{prefix}map_50": torch.tensor([stats[1]], dtype=torch.float32),
            f"{prefix}map_75": torch.tensor([stats[2]], dtype=torch.float32),
            f"{prefix}map_small": torch.tensor([stats[3]], dtype=torch.float32),
            f"{prefix}map_medium": torch.tensor([stats[4]], dtype=torch.float32),
            f"{prefix}map_large": torch.tensor([stats[5]], dtype=torch.float32),
            f"{prefix}mar_{mdt[0]}": torch.tensor([stats[6]], dtype=torch.float32),
            f"{prefix}mar_{mdt[1]}": torch.tensor([stats[7]], dtype=torch.float32),
            f"{prefix}mar_{mdt[2]}": torch.tensor([stats[8]], dtype=torch.float32),
            f"{prefix}mar_small": torch.tensor([stats[9]], dtype=torch.float32),
            f"{prefix}mar_medium": torch.tensor([stats[10]], dtype=torch.float32),
            f"{prefix}mar_large": torch.tensor([stats[11]], dtype=torch.float32),
        }

    @staticmethod
    def coco_to_tm(
        coco_preds: str,
        coco_target: str,
        iou_type: Union[Literal["bbox", "segm"], tuple[Literal["bbox", "segm"], ...]] = "bbox",
        backend: Literal["pycocotools", "faster_coco_eval"] = "pycocotools",
    ) -> tuple[list[dict[str, Tensor]], list[dict[str, Tensor]]]:
        """Utility function for converting .json coco format files to the input format of this metric.

        The function accepts a file for the predictions and a file for the target in coco format and converts them to
        a list of dictionaries containing the boxes, labels and scores in the input format of this metric.

        Args:
            coco_preds: Path to the json file containing the predictions in coco format
            coco_target: Path to the json file containing the targets in coco format
            iou_type: Type of input, either `bbox` for bounding boxes or `segm` for segmentation masks
            backend: Backend to use for the conversion. Either `pycocotools` or `faster_coco_eval`.

        Returns:
            A tuple containing the predictions and targets in the input format of this metric. Each element of the
            tuple is a list of dictionaries containing the boxes, labels and scores.

        Example:
            >>> # File formats are defined at https://cocodataset.org/#format-data
            >>> # Example files can be found at
            >>> # https://github.com/cocodataset/cocoapi/tree/master/results
            >>> from torchmetrics.detection import MeanAveragePrecision
            >>> preds, target = MeanAveragePrecision.coco_to_tm(
            ...   "instances_val2014_fakebbox100_results.json",
            ...   "val2014_fake_eval_res.txt.json"
            ...   iou_type="bbox"
            ... )  # doctest: +SKIP

        """
        iou_type = _validate_iou_type_arg(iou_type)
        coco, _, _ = _load_backend_tools(backend)

        with contextlib.redirect_stdout(io.StringIO()):
            gt = coco(coco_target)  # type: ignore[operator]
            dt = gt.loadRes(coco_preds)

        gt_dataset = gt.dataset["annotations"]
        dt_dataset = dt.dataset["annotations"]

        target: dict = {}
        for t in gt_dataset:
            if t["image_id"] not in target:
                target[t["image_id"]] = {
                    "labels": [],
                    "iscrowd": [],
                    "area": [],
                }
                if "bbox" in iou_type:
                    target[t["image_id"]]["boxes"] = []
                if "segm" in iou_type:
                    target[t["image_id"]]["masks"] = []

            if "bbox" in iou_type:
                target[t["image_id"]]["boxes"].append(t["bbox"])
            if "segm" in iou_type:
                target[t["image_id"]]["masks"].append(gt.annToMask(t))
            target[t["image_id"]]["labels"].append(t["category_id"])
            target[t["image_id"]]["iscrowd"].append(t["iscrowd"])
            target[t["image_id"]]["area"].append(t["area"])

        preds: dict = {}
        for p in dt_dataset:
            if p["image_id"] not in preds:
                preds[p["image_id"]] = {"scores": [], "labels": []}
                if "bbox" in iou_type:
                    preds[p["image_id"]]["boxes"] = []
                if "segm" in iou_type:
                    preds[p["image_id"]]["masks"] = []
            if "bbox" in iou_type:
                preds[p["image_id"]]["boxes"].append(p["bbox"])
            if "segm" in iou_type:
                preds[p["image_id"]]["masks"].append(gt.annToMask(p))
            preds[p["image_id"]]["scores"].append(p["score"])
            preds[p["image_id"]]["labels"].append(p["category_id"])
        for k in target:  # add empty predictions for images without predictions
            if k not in preds:
                preds[k] = {"scores": [], "labels": []}
                if "bbox" in iou_type:
                    preds[k]["boxes"] = []
                if "segm" in iou_type:
                    preds[k]["masks"] = []

        batched_preds, batched_target = [], []
        for key in target:
            bp = {
                "scores": torch.tensor(preds[key]["scores"], dtype=torch.float32),
                "labels": torch.tensor(preds[key]["labels"], dtype=torch.int32),
            }
            if "bbox" in iou_type:
                bp["boxes"] = torch.tensor(np.array(preds[key]["boxes"]), dtype=torch.float32)
            if "segm" in iou_type:
                bp["masks"] = torch.tensor(np.array(preds[key]["masks"]), dtype=torch.uint8)
            batched_preds.append(bp)

            bt = {
                "labels": torch.tensor(target[key]["labels"], dtype=torch.int32),
                "iscrowd": torch.tensor(target[key]["iscrowd"], dtype=torch.int32),
                "area": torch.tensor(target[key]["area"], dtype=torch.float32),
            }
            if "bbox" in iou_type:
                bt["boxes"] = torch.tensor(target[key]["boxes"], dtype=torch.float32)
            if "segm" in iou_type:
                bt["masks"] = torch.tensor(np.array(target[key]["masks"]), dtype=torch.uint8)
            batched_target.append(bt)

        return batched_preds, batched_target

    def tm_to_coco(self, name: str = "tm_map_input") -> None:
        """Utility function for converting the input for this metric to coco format and saving it to a json file.

        This function should be used after calling `.update(...)` or `.forward(...)` on all data that should be written
        to the file, as the input is then internally cached. The function then converts to information to coco format
        a writes it to json files.

        Args:
            name: Name of the output file, which will be appended with "_preds.json" and "_target.json"

        Example:
            >>> from torch import tensor
            >>> from torchmetrics.detection import MeanAveragePrecision
            >>> preds = [
            ...   dict(
            ...     boxes=tensor([[258.0, 41.0, 606.0, 285.0]]),
            ...     scores=tensor([0.536]),
            ...     labels=tensor([0]),
            ...   )
            ... ]
            >>> target = [
            ...   dict(
            ...     boxes=tensor([[214.0, 41.0, 562.0, 285.0]]),
            ...     labels=tensor([0]),
            ...   )
            ... ]
            >>> metric = MeanAveragePrecision(iou_type="bbox")
            >>> metric.update(preds, target)
            >>> metric.tm_to_coco("tm_map_input")

        """
        target_dataset = self._get_coco_format(
            labels=self.groundtruth_labels,
            boxes=self.groundtruth_box if len(self.groundtruth_box) > 0 else None,
            masks=self.groundtruth_mask if len(self.groundtruth_mask) > 0 else None,
            crowds=self.groundtruth_crowds,
            area=self.groundtruth_area,
        )
        preds_dataset = self._get_coco_format(
            labels=self.detection_labels,
            boxes=self.detection_box if len(self.detection_box) > 0 else None,
            masks=self.detection_mask if len(self.detection_mask) > 0 else None,
            scores=self.detection_scores,
        )
        if "segm" in self.iou_type:
            # the rle masks needs to be decoded to be written to a file
            preds_dataset["annotations"] = apply_to_collection(
                preds_dataset["annotations"], dtype=bytes, function=lambda x: x.decode("utf-8")
            )
            preds_dataset["annotations"] = apply_to_collection(
                preds_dataset["annotations"],
                dtype=np.uint32,
                function=lambda x: int(x),
            )
            target_dataset = apply_to_collection(target_dataset, dtype=bytes, function=lambda x: x.decode("utf-8"))

        preds_json = json.dumps(preds_dataset["annotations"], indent=4)
        target_json = json.dumps(target_dataset, indent=4)

        with open(f"{name}_preds.json", "w") as f:
            f.write(preds_json)

        with open(f"{name}_target.json", "w") as f:
            f.write(target_json)

    def _get_safe_item_values(
        self, item: dict[str, Any], warn: bool = False
    ) -> tuple[Optional[Tensor], Optional[tuple]]:
        """Convert and return the boxes or masks from the item depending on the iou_type.

        Args:
            item: input dictionary containing the boxes or masks
            warn: whether to warn if the number of boxes or masks exceeds the max_detection_thresholds

        Returns:
            boxes or masks depending on the iou_type

        """
        from torchvision.ops import box_convert

        output = [None, None]
        if "bbox" in self.iou_type:
            boxes = _fix_empty_tensors(item["boxes"])
            if boxes.numel() > 0:
                boxes = box_convert(boxes, in_fmt=self.box_format, out_fmt="xywh")
            output[0] = boxes  # type: ignore[call-overload]
        if "segm" in self.iou_type:
            masks = []
            for i in item["masks"].cpu().numpy():
                rle = self.mask_utils.encode(np.asfortranarray(i))
                masks.append((tuple(rle["size"]), rle["counts"]))
            output[1] = tuple(masks)  # type: ignore[call-overload]
        if warn and (
            (output[0] is not None and len(output[0]) > self.max_detection_thresholds[-1])
            or (output[1] is not None and len(output[1]) > self.max_detection_thresholds[-1])
        ):
            _warning_on_too_many_detections(self.max_detection_thresholds[-1])
        return output  # type: ignore[return-value]

    def _get_classes(self) -> list:
        """Return a list of unique classes found in ground truth and detection data."""
        if len(self.detection_labels) > 0 or len(self.groundtruth_labels) > 0:
            return torch.cat(self.detection_labels + self.groundtruth_labels).unique().cpu().tolist()
        return []

    def _get_coco_format(
        self,
        labels: List[Tensor],
        boxes: Optional[List[Tensor]] = None,
        masks: Optional[List[Tensor]] = None,
        scores: Optional[List[Tensor]] = None,
        crowds: Optional[List[Tensor]] = None,
        area: Optional[List[Tensor]] = None,
        average: Literal["macro", "micro"] = "macro",
    ) -> dict:
        """Transforms and returns all cached targets or predictions in COCO format.

        Format is defined at
        https://cocodataset.org/#format-data

        """
        images = []
        annotations = []
        annotation_id = 1  # has to start with 1, otherwise COCOEval results are wrong

        for image_id, image_labels in enumerate(labels):
            if boxes is not None:
                image_boxes = boxes[image_id]
                image_boxes = image_boxes.cpu().tolist()
            if masks is not None:
                image_masks = masks[image_id]
                if len(image_masks) == 0 and boxes is None:
                    continue
            image_labels = image_labels.cpu().tolist()  # type: ignore[assignment]

            images.append({"id": image_id})
            if "segm" in self.iou_type and len(image_masks) > 0:
                images[-1]["height"], images[-1]["width"] = image_masks[0][0][0], image_masks[0][0][1]  # type: ignore[assignment]

            for k, image_label in enumerate(image_labels):
                if boxes is not None:
                    image_box = image_boxes[k]
                if masks is not None and len(image_masks) > 0:
                    image_mask = image_masks[k]
                    image_mask = {"size": image_mask[0], "counts": image_mask[1]}

                if "bbox" in self.iou_type and len(image_box) != 4:
                    raise ValueError(
                        f"Invalid input box of sample {image_id}, element {k} (expected 4 values, got {len(image_box)})"
                    )

                if not isinstance(image_label, int):
                    raise ValueError(
                        f"Invalid input class of sample {image_id}, element {k}"
                        f" (expected value of type integer, got type {type(image_label)})"
                    )

                area_stat_box = None
                area_stat_mask = None
                if area is not None and area[image_id][k].cpu().tolist() > 0:  # type: ignore[operator]
                    area_stat = area[image_id][k].cpu().tolist()
                else:
                    area_stat = (
                        self.mask_utils.area(image_mask) if "segm" in self.iou_type else image_box[2] * image_box[3]
                    )
                    if len(self.iou_type) > 1:
                        area_stat_box = image_box[2] * image_box[3]
                        area_stat_mask = self.mask_utils.area(image_mask)

                annotation = {
                    "id": annotation_id,
                    "image_id": image_id,
                    "area": area_stat,
                    "category_id": image_label,
                    "iscrowd": crowds[image_id][k].cpu().tolist() if crowds is not None else 0,
                }
                if area_stat_box is not None:
                    annotation["area_bbox"] = area_stat_box
                    annotation["area_segm"] = area_stat_mask

                if boxes is not None:
                    annotation["bbox"] = image_box
                if masks is not None:
                    annotation["segmentation"] = image_mask

                if scores is not None:
                    score = scores[image_id][k].cpu().tolist()
                    if not isinstance(score, float):
                        raise ValueError(
                            f"Invalid input score of sample {image_id}, element {k}"
                            f" (expected value of type float, got type {type(score)})"
                        )
                    annotation["score"] = score
                annotations.append(annotation)
                annotation_id += 1

        classes = (
            [{"id": i, "name": str(i)} for i in self._get_classes()] if average != "micro" else [{"id": 0, "name": "0"}]
        )
        return {"images": images, "annotations": annotations, "categories": classes}

    def plot(
        self, val: Optional[Union[dict[str, Tensor], Sequence[dict[str, Tensor]]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure object and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> from torch import tensor
            >>> from torchmetrics.detection.mean_ap import MeanAveragePrecision
            >>> preds = [dict(
            ...     boxes=tensor([[258.0, 41.0, 606.0, 285.0]]),
            ...     scores=tensor([0.536]),
            ...     labels=tensor([0]),
            ... )]
            >>> target = [dict(
            ...     boxes=tensor([[214.0, 41.0, 562.0, 285.0]]),
            ...     labels=tensor([0]),
            ... )]
            >>> metric = MeanAveragePrecision()
            >>> metric.update(preds, target)
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.detection.mean_ap import MeanAveragePrecision
            >>> preds = lambda: [dict(
            ...     boxes=torch.tensor([[258.0, 41.0, 606.0, 285.0]]) + torch.randint(10, (1,4)),
            ...     scores=torch.tensor([0.536]) + 0.1*torch.rand(1),
            ...     labels=torch.tensor([0]),
            ... )]
            >>> target = [dict(
            ...     boxes=torch.tensor([[214.0, 41.0, 562.0, 285.0]]),
            ...     labels=torch.tensor([0]),
            ... )]
            >>> metric = MeanAveragePrecision()
            >>> vals = []
            >>> for _ in range(20):
            ...     vals.append(metric(preds(), target))
            >>> fig_, ax_ = metric.plot(vals)

        """
        return self._plot(val, ax)

    # --------------------
    # specialized synchronization and apply functions for this metric
    # --------------------

    def _apply(self, fn: Callable) -> torch.nn.Module:  # type: ignore[override]
        """Custom apply function.

        Excludes the detections and groundtruths from the casting when the iou_type is set to `segm` as the state is
        no longer a tensor but a tuple.

        """
        return super()._apply(fn, exclude_state=("detection_mask", "groundtruth_mask"))

    def _sync_dist(self, dist_sync_fn: Optional[Callable] = None, process_group: Optional[Any] = None) -> None:
        """Custom sync function.

        For the iou_type `segm` the detections and groundtruths are no longer tensors but tuples. Therefore, we need
        to gather the list of tuples and then convert it back to a list of tuples.

        """
        super()._sync_dist(dist_sync_fn=dist_sync_fn, process_group=process_group)  # type: ignore[arg-type]

        if "segm" in self.iou_type:
            self.detection_mask = self._gather_tuple_list(self.detection_mask, process_group)  # type: ignore[arg-type]
            self.groundtruth_mask = self._gather_tuple_list(self.groundtruth_mask, process_group)  # type: ignore[arg-type]

    @staticmethod
    def _gather_tuple_list(list_to_gather: list[tuple], process_group: Optional[Any] = None) -> list[Any]:
        """Gather a list of tuples over multiple devices.

        Args:
            list_to_gather: input list of tuples that should be gathered across devices
            process_group: process group to gather the list of tuples

        Returns:
            list of tuples gathered across devices

        """
        world_size = dist.get_world_size(group=process_group)
        dist.barrier(group=process_group)

        list_gathered = [None for _ in range(world_size)]
        dist.all_gather_object(list_gathered, list_to_gather, group=process_group)

        return [list_gathered[rank][idx] for idx in range(len(list_gathered[0])) for rank in range(world_size)]  # type: ignore[arg-type,index]


def _warning_on_too_many_detections(limit: int) -> None:
    rank_zero_warn(
        f"Encountered more than {limit} detections in a single image. This means that certain detections with the"
        " lowest scores will be ignored, that may have an undesirable impact on performance. Please consider adjusting"
        " the `max_detection_threshold` to suit your use case. To disable this warning, set attribute class"
        " `warn_on_many_detections=False`, after initializing the metric.",
        UserWarning,
    )