File size: 10,554 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
"""Implement various linear algebra algorithms for low rank matrices."""
__all__ = ["svd_lowrank", "pca_lowrank"]
from typing import Optional
import torch
from torch import _linalg_utils as _utils, Tensor
from torch.overrides import handle_torch_function, has_torch_function
def get_approximate_basis(
A: Tensor,
q: int,
niter: Optional[int] = 2,
M: Optional[Tensor] = None,
) -> Tensor:
"""Return tensor :math:`Q` with :math:`q` orthonormal columns such
that :math:`Q Q^H A` approximates :math:`A`. If :math:`M` is
specified, then :math:`Q` is such that :math:`Q Q^H (A - M)`
approximates :math:`A - M`. without instantiating any tensors
of the size of :math:`A` or :math:`M`.
.. note:: The implementation is based on the Algorithm 4.4 from
Halko et al., 2009.
.. note:: For an adequate approximation of a k-rank matrix
:math:`A`, where k is not known in advance but could be
estimated, the number of :math:`Q` columns, q, can be
choosen according to the following criteria: in general,
:math:`k <= q <= min(2*k, m, n)`. For large low-rank
matrices, take :math:`q = k + 5..10`. If k is
relatively small compared to :math:`min(m, n)`, choosing
:math:`q = k + 0..2` may be sufficient.
.. note:: To obtain repeatable results, reset the seed for the
pseudorandom number generator
Args::
A (Tensor): the input tensor of size :math:`(*, m, n)`
q (int): the dimension of subspace spanned by :math:`Q`
columns.
niter (int, optional): the number of subspace iterations to
conduct; ``niter`` must be a
nonnegative integer. In most cases, the
default value 2 is more than enough.
M (Tensor, optional): the input tensor's mean of size
:math:`(*, m, n)`.
References::
- Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
structure with randomness: probabilistic algorithms for
constructing approximate matrix decompositions,
arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
`arXiv <http://arxiv.org/abs/0909.4061>`_).
"""
niter = 2 if niter is None else niter
dtype = _utils.get_floating_dtype(A) if not A.is_complex() else A.dtype
matmul = _utils.matmul
R = torch.randn(A.shape[-1], q, dtype=dtype, device=A.device)
# The following code could be made faster using torch.geqrf + torch.ormqr
# but geqrf is not differentiable
X = matmul(A, R)
if M is not None:
X = X - matmul(M, R)
Q = torch.linalg.qr(X).Q
for _ in range(niter):
X = matmul(A.mH, Q)
if M is not None:
X = X - matmul(M.mH, Q)
Q = torch.linalg.qr(X).Q
X = matmul(A, Q)
if M is not None:
X = X - matmul(M, Q)
Q = torch.linalg.qr(X).Q
return Q
def svd_lowrank(
A: Tensor,
q: Optional[int] = 6,
niter: Optional[int] = 2,
M: Optional[Tensor] = None,
) -> tuple[Tensor, Tensor, Tensor]:
r"""Return the singular value decomposition ``(U, S, V)`` of a matrix,
batches of matrices, or a sparse matrix :math:`A` such that
:math:`A \approx U \operatorname{diag}(S) V^{\text{H}}`. In case :math:`M` is given, then
SVD is computed for the matrix :math:`A - M`.
.. note:: The implementation is based on the Algorithm 5.1 from
Halko et al., 2009.
.. note:: For an adequate approximation of a k-rank matrix
:math:`A`, where k is not known in advance but could be
estimated, the number of :math:`Q` columns, q, can be
choosen according to the following criteria: in general,
:math:`k <= q <= min(2*k, m, n)`. For large low-rank
matrices, take :math:`q = k + 5..10`. If k is
relatively small compared to :math:`min(m, n)`, choosing
:math:`q = k + 0..2` may be sufficient.
.. note:: This is a randomized method. To obtain repeatable results,
set the seed for the pseudorandom number generator
.. note:: In general, use the full-rank SVD implementation
:func:`torch.linalg.svd` for dense matrices due to its 10x
higher performance characteristics. The low-rank SVD
will be useful for huge sparse matrices that
:func:`torch.linalg.svd` cannot handle.
Args::
A (Tensor): the input tensor of size :math:`(*, m, n)`
q (int, optional): a slightly overestimated rank of A.
niter (int, optional): the number of subspace iterations to
conduct; niter must be a nonnegative
integer, and defaults to 2
M (Tensor, optional): the input tensor's mean of size
:math:`(*, m, n)`, which will be broadcasted
to the size of A in this function.
References::
- Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
structure with randomness: probabilistic algorithms for
constructing approximate matrix decompositions,
arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
`arXiv <https://arxiv.org/abs/0909.4061>`_).
"""
if not torch.jit.is_scripting():
tensor_ops = (A, M)
if not set(map(type, tensor_ops)).issubset(
(torch.Tensor, type(None))
) and has_torch_function(tensor_ops):
return handle_torch_function(
svd_lowrank, tensor_ops, A, q=q, niter=niter, M=M
)
return _svd_lowrank(A, q=q, niter=niter, M=M)
def _svd_lowrank(
A: Tensor,
q: Optional[int] = 6,
niter: Optional[int] = 2,
M: Optional[Tensor] = None,
) -> tuple[Tensor, Tensor, Tensor]:
# Algorithm 5.1 in Halko et al., 2009
q = 6 if q is None else q
m, n = A.shape[-2:]
matmul = _utils.matmul
if M is not None:
M = M.broadcast_to(A.size())
# Assume that A is tall
if m < n:
A = A.mH
if M is not None:
M = M.mH
Q = get_approximate_basis(A, q, niter=niter, M=M)
B = matmul(Q.mH, A)
if M is not None:
B = B - matmul(Q.mH, M)
U, S, Vh = torch.linalg.svd(B, full_matrices=False)
V = Vh.mH
U = Q.matmul(U)
if m < n:
U, V = V, U
return U, S, V
def pca_lowrank(
A: Tensor,
q: Optional[int] = None,
center: bool = True,
niter: int = 2,
) -> tuple[Tensor, Tensor, Tensor]:
r"""Performs linear Principal Component Analysis (PCA) on a low-rank
matrix, batches of such matrices, or sparse matrix.
This function returns a namedtuple ``(U, S, V)`` which is the
nearly optimal approximation of a singular value decomposition of
a centered matrix :math:`A` such that :math:`A \approx U \operatorname{diag}(S) V^{\text{H}}`
.. note:: The relation of ``(U, S, V)`` to PCA is as follows:
- :math:`A` is a data matrix with ``m`` samples and
``n`` features
- the :math:`V` columns represent the principal directions
- :math:`S ** 2 / (m - 1)` contains the eigenvalues of
:math:`A^T A / (m - 1)` which is the covariance of
``A`` when ``center=True`` is provided.
- ``matmul(A, V[:, :k])`` projects data to the first k
principal components
.. note:: Different from the standard SVD, the size of returned
matrices depend on the specified rank and q
values as follows:
- :math:`U` is m x q matrix
- :math:`S` is q-vector
- :math:`V` is n x q matrix
.. note:: To obtain repeatable results, reset the seed for the
pseudorandom number generator
Args:
A (Tensor): the input tensor of size :math:`(*, m, n)`
q (int, optional): a slightly overestimated rank of
:math:`A`. By default, ``q = min(6, m,
n)``.
center (bool, optional): if True, center the input tensor,
otherwise, assume that the input is
centered.
niter (int, optional): the number of subspace iterations to
conduct; niter must be a nonnegative
integer, and defaults to 2.
References::
- Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp, Finding
structure with randomness: probabilistic algorithms for
constructing approximate matrix decompositions,
arXiv:0909.4061 [math.NA; math.PR], 2009 (available at
`arXiv <http://arxiv.org/abs/0909.4061>`_).
"""
if not torch.jit.is_scripting():
if type(A) is not torch.Tensor and has_torch_function((A,)):
return handle_torch_function(
pca_lowrank, (A,), A, q=q, center=center, niter=niter
)
(m, n) = A.shape[-2:]
if q is None:
q = min(6, m, n)
elif not (q >= 0 and q <= min(m, n)):
raise ValueError(
f"q(={q}) must be non-negative integer and not greater than min(m, n)={min(m, n)}"
)
if not (niter >= 0):
raise ValueError(f"niter(={niter}) must be non-negative integer")
dtype = _utils.get_floating_dtype(A)
if not center:
return _svd_lowrank(A, q, niter=niter, M=None)
if _utils.is_sparse(A):
if len(A.shape) != 2:
raise ValueError("pca_lowrank input is expected to be 2-dimensional tensor")
c = torch.sparse.sum(A, dim=(-2,)) / m
# reshape c
column_indices = c.indices()[0]
indices = torch.zeros(
2,
len(column_indices),
dtype=column_indices.dtype,
device=column_indices.device,
)
indices[0] = column_indices
C_t = torch.sparse_coo_tensor(
indices, c.values(), (n, 1), dtype=dtype, device=A.device
)
ones_m1_t = torch.ones(A.shape[:-2] + (1, m), dtype=dtype, device=A.device)
M = torch.sparse.mm(C_t, ones_m1_t).mT
return _svd_lowrank(A, q, niter=niter, M=M)
else:
C = A.mean(dim=(-2,), keepdim=True)
return _svd_lowrank(A - C, q, niter=niter, M=None)
|