File size: 6,194 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
from argparse import Namespace
from collections.abc import Mapping, MutableMapping
from dataclasses import asdict, is_dataclass
from typing import Any, Optional, Union
from torch import Tensor
from lightning_fabric.utilities.imports import _NUMPY_AVAILABLE
def _convert_params(params: Optional[Union[dict[str, Any], Namespace]]) -> dict[str, Any]:
"""Ensure parameters are a dict or convert to dict if necessary.
Args:
params: Target to be converted to a dictionary
Returns:
params as a dictionary
"""
# in case converting from namespace
if isinstance(params, Namespace):
params = vars(params)
if params is None:
params = {}
return params
def _sanitize_callable_params(params: dict[str, Any]) -> dict[str, Any]:
"""Sanitize callable params dict, e.g. ``{'a': <function_**** at 0x****>} -> {'a': 'function_****'}``.
Args:
params: Dictionary containing the hyperparameters
Returns:
dictionary with all callables sanitized
"""
def _sanitize_callable(val: Any) -> Any:
if inspect.isclass(val):
# If it's a class, don't try to instantiate it, just return the name
return val.__name__
if callable(val):
# Callables get a chance to return a name
try:
_val = val()
if callable(_val):
return val.__name__
return _val
# todo: specify the possible exception
except Exception:
return getattr(val, "__name__", None)
return val
return {key: _sanitize_callable(val) for key, val in params.items()}
def _flatten_dict(params: MutableMapping[Any, Any], delimiter: str = "/", parent_key: str = "") -> dict[str, Any]:
"""Flatten hierarchical dict, e.g. ``{'a': {'b': 'c'}} -> {'a/b': 'c'}``.
Args:
params: Dictionary containing the hyperparameters
delimiter: Delimiter to express the hierarchy. Defaults to ``'/'``.
Returns:
Flattened dict.
Examples:
>>> _flatten_dict({'a': {'b': 'c'}})
{'a/b': 'c'}
>>> _flatten_dict({'a': {'b': 123}})
{'a/b': 123}
>>> _flatten_dict({5: {'a': 123}})
{'5/a': 123}
>>> _flatten_dict({"dl": [{"a": 1, "c": 3}, {"b": 2, "d": 5}], "l": [1, 2, 3, 4]})
{'dl/0/a': 1, 'dl/0/c': 3, 'dl/1/b': 2, 'dl/1/d': 5, 'l': [1, 2, 3, 4]}
"""
result: dict[str, Any] = {}
for k, v in params.items():
new_key = parent_key + delimiter + str(k) if parent_key else str(k)
if is_dataclass(v) and not isinstance(v, type):
v = asdict(v)
elif isinstance(v, Namespace):
v = vars(v)
if isinstance(v, MutableMapping):
result = {**result, **_flatten_dict(v, parent_key=new_key, delimiter=delimiter)}
# Also handle the case where v is a list of dictionaries
elif isinstance(v, list) and all(isinstance(item, MutableMapping) for item in v):
for i, item in enumerate(v):
result = {**result, **_flatten_dict(item, parent_key=f"{new_key}/{i}", delimiter=delimiter)}
else:
result[new_key] = v
return result
def _sanitize_params(params: dict[str, Any]) -> dict[str, Any]:
"""Returns params with non-primitvies converted to strings for logging.
>>> import torch
>>> params = {"float": 0.3,
... "int": 1,
... "string": "abc",
... "bool": True,
... "list": [1, 2, 3],
... "namespace": Namespace(foo=3),
... "layer": torch.nn.BatchNorm1d}
>>> import pprint
>>> pprint.pprint(_sanitize_params(params)) # doctest: +NORMALIZE_WHITESPACE
{'bool': True,
'float': 0.3,
'int': 1,
'layer': "<class 'torch.nn.modules.batchnorm.BatchNorm1d'>",
'list': '[1, 2, 3]',
'namespace': 'Namespace(foo=3)',
'string': 'abc'}
"""
for k in params:
if _NUMPY_AVAILABLE:
import numpy as np
if isinstance(params[k], (np.bool_, np.integer, np.floating)):
params[k] = params[k].item()
if type(params[k]) not in [bool, int, float, str, Tensor]:
params[k] = str(params[k])
return params
def _convert_json_serializable(params: dict[str, Any]) -> dict[str, Any]:
"""Convert non-serializable objects in params to string."""
return {k: str(v) if not _is_json_serializable(v) else v for k, v in params.items()}
def _is_json_serializable(value: Any) -> bool:
"""Test whether a variable can be encoded as json."""
if value is None or isinstance(value, (bool, int, float, str, list, dict)): # fast path
return True
try:
json.dumps(value)
return True
except (TypeError, OverflowError):
# OverflowError is raised if number is too large to encode
return False
def _add_prefix(
metrics: Mapping[str, Union[Tensor, float]], prefix: str, separator: str
) -> Mapping[str, Union[Tensor, float]]:
"""Insert prefix before each key in a dict, separated by the separator.
Args:
metrics: Dictionary with metric names as keys and measured quantities as values
prefix: Prefix to insert before each key
separator: Separates prefix and original key name
Returns:
Dictionary with prefix and separator inserted before each key
"""
if not prefix:
return metrics
return {f"{prefix}{separator}{k}": v for k, v in metrics.items()}
|