File size: 4,123 Bytes
75f2ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493509d
75f2ed4
493509d
75f2ed4
 
 
 
493509d
 
 
 
 
75f2ed4
 
493509d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
import torchvision.utils as utils
import gradio as gr

device = 'cpu'
if torch.backends.mps.is_available():
    device = 'mps'
if torch.cuda.is_available():
    device = 'cuda'
print('DEVICE:', device)

class VGG_19(nn.Module):
    def __init__(self):
        super(VGG_19, self).__init__()
        self.model = models.vgg19(pretrained=True).features[:30]
        
        for i, _ in enumerate(self.model):
            if i in [4, 9, 18, 27]:
                self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
                
    def forward(self, x):
        features = []
        
        for i, layer in enumerate(self.model):
            x = layer(x)
            if i in [0, 5, 10, 19, 28]:
                features.append(x)
        return features
    
model = VGG_19().to(device)
for param in model.parameters():
    param.requires_grad = False

def load_img(img: Image, img_size):
    original_size = img.size
    
    transform = transforms.Compose([
        transforms.Resize((img_size, img_size)),
        transforms.ToTensor()
    ])
    img = transform(img).unsqueeze(0)
    return img, original_size

def load_img_from_path(path_to_image, img_size):
    img = Image.open(path_to_image)
    original_size = img.size
    
    transform = transforms.Compose([
        transforms.Resize((img_size, img_size)),
        transforms.ToTensor()
    ])
    img = transform(img).unsqueeze(0)
    return img, original_size

def save_img(img, original_size):
    img = img.cpu().clone()
    img = img.squeeze(0)
    
    # address tensor value scaling and quantization
    img = torch.clamp(img, 0, 1)
    img = img.mul(255).byte()
    
    unloader = transforms.ToPILImage()
    img = unloader(img)
    
    img = img.resize(original_size, Image.Resampling.LANCZOS)
    
    return img


def transfer_style(content_image):
    style_img_filename = 'StarryNight.jpg'
    img_size = 512
    content_img, original_size = load_img(content_image, img_size)
    content_img = content_img.to(device)
    style_img = load_img_from_path(f'./style_images/{style_img_filename}', img_size)[0].to(device)

    iters = 100
    lr = 1e-1
    alpha = 1
    beta = 1

    generated_img = content_img.clone().requires_grad_(True)
    optimizer = optim.Adam([generated_img], lr=lr)

    for iter in range(iters+1):
        generated_features = model(generated_img)
        content_features = model(content_img)
        style_features = model(style_img)
        
        content_loss = 0
        style_loss = 0
        
        for generated_feature, content_feature, style_feature in zip(generated_features, content_features, style_features):

            batch_size, n_feature_maps, height, width = generated_feature.size()
            
            content_loss += (torch.mean((generated_feature - content_feature) ** 2))
            
            G = torch.mm((generated_feature.view(batch_size * n_feature_maps, height * width)), (generated_feature.view(batch_size * n_feature_maps, height * width)).t())
            A = torch.mm((style_feature.view(batch_size * n_feature_maps, height * width)), (style_feature.view(batch_size * n_feature_maps, height * width)).t())
            
            E_l = ((G - A) ** 2)
            w_l = 1/5
            style_loss += torch.mean(w_l * E_l)
            
        total_loss = alpha * content_loss + beta * style_loss
        optimizer.zero_grad()
        total_loss.backward()
        optimizer.step()

        yield save_img(generated_img, original_size), str(round(iter/iters*100))+'%'
        
    yield save_img(generated_img, original_size), str(round(iter/iters*100))+'%'


interface = gr.Interface(
    fn=transfer_style, 
    inputs=[gr.Image(label='Content', type='pil')], 
    outputs=[
        gr.Image(label='Output', show_download_button=True),
        gr.Label(label='Progress')
    ],
    title="Starry Night Style Transfer",
    api_name='style',
    allow_flagging='never',
).launch(inbrowser=True)