File size: 9,252 Bytes
62124cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import openai
import gradio as gr
import os

from langchain.document_loaders import UnstructuredFileLoader 

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter

class DocumentManager:
    def __init__(self):
        self.api_key = None
        self.citation = ""
        self.docs = []
        self.retriever = None
        self.files = []
        self.provide_citation = True 

        self.source_documents = []

        self.user_prompt = "Be direct and cite your sources."
        self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)

        self.check_for_api_key_env()

    def check_for_api_key_env(self):
        if "OPENAI_API_KEY" in os.environ:
            self.set_api_key(os.environ["OPENAI_API_KEY"])

    def set_api_key(self, value):
        if (value is None) or (not value.startswith("sk")):
            gr.Warning("Please enter a valid OpenAI API key.")
            return self.create_api_key_status_display()

        self.api_key = value
        openai.api_key = self.api_key
        if len(self.docs) > 0:
            documents = self.text_splitter.split_documents(self.docs)
            self.retriever = Chroma.from_documents(documents, OpenAIEmbeddings(openai_api_key=self.api_key)).as_retriever(search_type="mmr", search_kwargs={'fetch_k': 30}, return_source_documents=True)
        else:
            self.retriever = Chroma(embedding_function=OpenAIEmbeddings(openai_api_key=self.api_key)).as_retriever(search_type="mmr", search_kwargs={'fetch_k': 30}, return_source_documents=True)
        self.llm = ChatOpenAI(model_name="gpt-4", temperature=0, streaming=True, openai_api_key=self.api_key)
        self.qa = RetrievalQA.from_chain_type(
            llm=self.llm,
            chain_type="stuff", 
            retriever=self.retriever,
            return_source_documents=True)

        return self.create_api_key_status_display()

    def create_api_key_status_display(self):
        if self.api_key is None:
            return gr.Textbox("❌ Please enter an API key.", label=None, interactive=False, container=False)
        else:
            return gr.Textbox(f"✅ API key: {self.api_key[:9]}", label=None, interactive=False, container=False)
        
    def get_user_prompt(self):  
        return self.user_prompt
    
    def set_user_prompt(self, value):
        self.user_prompt = value
    
    def set_provide_citation(self, value):
        self.provide_citation = value

    def delete_files(self):
        self.docs = []
        self.files = []
        self.source_documents = []
        self.db = Chroma(embedding_function=OpenAIEmbeddings(openai_api_key=self.api_key))

        self.db._client_settings.allow_reset = True
        self.db._client.reset()

        self.retreiver = self.db.as_retriever(search_type="mmr", search_kwargs={'fetch_k': 30}, return_source_documents=True)
        self.llm = ChatOpenAI(model_name="gpt-4", temperature=0, streaming=True, openai_api_key=self.api_key)

        self.qa = RetrievalQA.from_chain_type(
            llm=self.llm,
            chain_type="stuff", 
            retriever=Chroma(
                embedding_function=OpenAIEmbeddings(openai_api_key=self.api_key))
                    .as_retriever(search_type="mmr", search_kwargs={'fetch_k': 30}, return_source_documents=True),
            return_source_documents=True)

        return gr.Markdown(self.generate_file_markdown(), label="Uploaded files")

    def reset_qa(self):
        documents = self.text_splitter.split_documents(self.docs)
        self.retriever = Chroma.from_documents(documents, OpenAIEmbeddings(openai_api_key=self.api_key)).as_retriever(search_type="mmr", search_kwargs={'fetch_k': 30}, return_source_documents=True)
        self.llm = ChatOpenAI(model_name="gpt-4", temperature=0, streaming=True, openai_api_key=self.api_key)
        self.qa = RetrievalQA.from_chain_type(
            llm=self.llm,
            chain_type="stuff", 
            retriever=self.retriever,
            return_source_documents=True)

    def tokenize_doc(self, filepath):
        loader = UnstructuredFileLoader(filepath)
        doc = loader.load()
        self.docs.extend(doc)

    def update_citation(self):
        if self.provide_citation and self.api_key:
            summed = ""
            for doc in self.source_documents:
                summed += doc.page_content

            self.citation = self.llm.predict(
                "Question: " + self.question + ". Answer: " + self.result + ". Citation: " + summed + 
                ". From the citation, return the relevant passage and the exact articles")
        else:
            self.citation = ""

        return self.citation

    def predict(self, message, history):
        if self.api_key is None:
            gr.Warning("Please enter an OpenAI API key in the settings tab.")
            return "", []

        if history is None:
            history = []

        summed_history = " ".join(sum(history, []))
        question = "You have access to these documents:" + self.generate_file_markdown() + ". Do not make things up, only say what you have a primary source document for. ---- CHAT HISTORY : " + summed_history + " --- SYSTEM PROMPT: " + self.user_prompt + " -- Answer this question: " + message

        print(self.retriever.vectorstore.get())

        result = self.qa({"query": question})

        self.source_documents = result["source_documents"]
        self.result = result["result"]
        self.question = question

        history.append([message, ""])
        for message in result["result"]:
            history[-1][1] += message
            yield "", history

    def generate_file_markdown(self):
        files_md = ""
        for file in self.files:
            filename = file.split("/")[-1]
            files_md += "- " + filename + "\n"
        return files_md

    def upload_file(self, files):
        if self.api_key is None:
            gr.Warning("Please enter an OpenAI API key.")
            return self.files

        for file in files:
            self.tokenize_doc(file.name)
        filepaths = [file.orig_name for file in files]
        self.files = filepaths + self.files
        self.reset_qa()

        return gr.Markdown(self.generate_file_markdown(), label="Uploaded files") 

    def create_delete_button(self, value):
        if value and self.api_key:
            return gr.Button("Delete files", scale=4, interactive=True)
        else:
            return gr.Button("Delete files", scale=4, interactive=False)

def create_demo():
    doc_manager = DocumentManager()

    with gr.Blocks() as demo:
        with gr.Tab("Chat"):
            with gr.Row():
                chatbot = gr.Chatbot(scale=5, layout="panel", height=700)
                with gr.Column():
                    citation = gr.Textbox("", label="Citation", interactive=False, scale=3, container=False)
                    checkbox = gr.Checkbox(label="Provide document citation", value=True)
                    checkbox.change(doc_manager.set_provide_citation, checkbox)
            msg = gr.Textbox(label="Enter your message")
            with gr.Row():
                submit_button = gr.Button("Submit ➡️")
                submit_button.click(doc_manager.predict, [msg, chatbot], [msg, chatbot]).then(doc_manager.update_citation, None, citation)
                clear = gr.ClearButton([msg, chatbot, citation])

            msg.submit(doc_manager.predict, [msg, chatbot], [msg, chatbot]).then(doc_manager.update_citation, None, citation)

        with gr.Tab("Settings") as settings_tab:
            with gr.Row():
                api_key_textbox = gr.Textbox(label="OpenAI API Key", scale=5)
                with gr.Column():
                    api_key_status = doc_manager.create_api_key_status_display()
                    save_key_button = gr.Button("Save Key")
                    save_key_button.click(doc_manager.set_api_key, inputs=api_key_textbox, outputs=api_key_status).then(lambda:None, None, api_key_textbox, queue=False)

            file_output = gr.Markdown("", label="Uploaded files")
            upload_button = gr.UploadButton("Upload Files", file_count="multiple")
            upload_button.upload(doc_manager.upload_file, upload_button, file_output)
            prompt_textbox = gr.Textbox(label="Prompt", value=doc_manager.get_user_prompt())
            prompt_textbox.change(doc_manager.set_user_prompt, prompt_textbox)

            with gr.Row():
                allow_delete_checkbox = gr.Checkbox(value=False, label="Allow deletion of files") 
                delete_button = doc_manager.create_delete_button(False)
                delete_button.click(doc_manager.delete_files, outputs=file_output)
                allow_delete_checkbox.select(doc_manager.create_delete_button, outputs=delete_button, inputs=allow_delete_checkbox)

            settings_tab.select(doc_manager.create_api_key_status_display, outputs=api_key_status)

    return demo


if __name__ == "__main__":
    demo = create_demo() 
    demo.queue().launch(auth=("user", "pw"))