Spaces:
Runtime error
Runtime error
File size: 2,866 Bytes
280110b ccce4ac 280110b ccce4ac 280110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import os
import utils
import pickle
import pandas as pd
import gradio as gr
def main(address :str, floor_area_sqft :int, remaining_lease_years :int, flat_type, storey_range):
model_file = 'model.sav'
flat_type_1, flat_type_2, flat_type_3, flat_type_4, flat_type_5, flat_type_6, flat_type_7 = 0, 0, 0 , 0, 0, 0, 0
storey_low, storey_mid, storey_high = 0, 0, 0
if flat_type == '1 ROOM':
flat_type_1 = 1,
elif flat_type == '2 ROOM':
flat_type_2 = 1,
elif flat_type == '3 ROOM':
flat_type_3 = 1,
elif flat_type == '4 ROOM':
flat_type_4 = 1,
elif flat_type == '5 ROOM':
flat_type_5 = 1,
elif flat_type == 'EXECUTIVE':
flat_type_6 = 1,
elif flat_type == 'MULTI-GENERATION':
flat_type_7 = 1,
if storey_range == 'LOW FLOOR':
storey_low = 1,
elif storey_range == 'MID FLOOR':
storey_mid = 1,
elif storey_range == 'HIGH FLOOR':
storey_high = 1,
if os.path.exists("./model.sav"):
model = pickle.load(open(model_file, 'rb'))
input_dict = pd.DataFrame({
'floor_area_sqft': floor_area_sqft,
'remaining_lease_years': remaining_lease_years,
'distance_to_nearest_MRT_station': utils.distance_to_nearest_MRT_station(address),
'distance_to_city': utils.distance_to_city(address),
'flat_type_1 ROOM': flat_type_1,
'flat_type_2 ROOM': flat_type_2,
'flat_type_3 ROOM': flat_type_3,
'flat_type_4 ROOM': flat_type_4,
'flat_type_5 ROOM': flat_type_5,
'flat_type_EXECUTIVE': flat_type_6,
'flat_type_MULTI-GENERATION': flat_type_7,
'storey_range_High Floor': storey_high,
'storey_range_Low Floor': storey_low,
'storey_range_Mid Floor': storey_mid},
index = [0])
return ({'Predicted PSF': round(model.predict(input_dict).item(),2), 'Predicted Price': round(model.predict(input_dict).item() * floor_area_sqft, 2)})
else:
return ('ERROR: No saved model')
iface = gr.Interface(
fn = main,
inputs = [
gr.inputs.Textbox(lines=2, placeholder= "Example: 88 dawson road or Singapore 142088", default=None, label="Address"),
gr.inputs.Number(default=893, label='Floor Area (sqft)', optional=False),
gr.inputs.Number(default=None, label='Remaining Lease (years)', optional=False),
gr.inputs.Dropdown(choices=['1 ROOM', '2 ROOM', '3 ROOM', '4 ROOM', '5 ROOM', 'EXECUTIVE', 'MULTI-GENERATION'], type="value", default=None, label="Flat Type"),
gr.inputs.Dropdown(choices=['LOW FLOOR', 'MID FLOOR', 'HIGH FLOOR'], type="value", default=None, label="Storey Range"),
],
outputs = [gr.outputs.Textbox(type="auto", label='Predicted Price per SQFT')])
iface.launch() |