Spaces:
Runtime error
Runtime error
File size: 9,857 Bytes
280110b acd390c 280110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import json
import pickle
import requests
import geopy.distance
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
def get_data_data_gov(url):
query_string = url
resp = requests.get(query_string)
data = json.loads(resp.content) # convert from json to python dict
print('Number of records:', len(data.get('result').get('records')))
data = data['result']['records']
df = pd.DataFrame.from_dict(data).drop(['_id'], axis=1)
# print(df.isnull().sum())
# print(df.dtypes)
return df
def get_data_singstat_price_index(url):
query_string = url
resp = requests.get(query_string)
data = json.loads(resp.content) # convert from json to python dict
print('Number of records:', len(data.get('Data').get('row')[0].get('columns')))
df = pd.DataFrame.from_dict(data.get('Data').get('row')[0].get('columns'))
# print(df.isnull().sum())
# print(df.dtypes)
return df
def get_data_one_map(address, is_LAT_LONG_only=False):
query_string = 'https://developers.onemap.sg/commonapi/search?searchVal='+str(address)+'&returnGeom=Y&getAddrDetails=Y'
resp = requests.get(query_string)
data = json.loads(resp.content) # convert from json to python dict
if data['found'] != 0 and is_LAT_LONG_only:
data = data['results'][0]
data = (data['LATITUDE'], data['LONGITUDE'])
elif data['found'] != 0:
data = data['results'][0]
else:
data = None
return data
def distance_to_city(address):
hdb_coordinates = get_data_one_map(address, is_LAT_LONG_only = True)
return geopy.distance.great_circle((1.29293672227779, 103.852585580366), hdb_coordinates).km
def distance_to_nearest_MRT_station(address):
hdb_coordinates = get_data_one_map(address, is_LAT_LONG_only = True)
df_MRT = pd.read_pickle('./df_MRT.pkl')
MRT_coordinates = df_MRT.T.iloc[-1,:].tolist()
dist = []
for coordinates in MRT_coordinates:
dist.append(geopy.distance.great_circle(hdb_coordinates, coordinates).km)
return min(dist)
def month_to_quarter(x):
year = int(x.split('-')[0])
month = int(x.split('-')[1])
if month <= 3:
month = '1Q'
elif month <= 6:
month = '2Q'
elif month <= 9:
month = '3Q'
else:
month = '4Q'
return (str(year) + '-' + str(month))
def get_update(data_year):
### DATA EXTRACTION AND PREPROCESSING ###
df_raw_data = get_data_data_gov('https://data.gov.sg/api/action/datastore_search?resource_id=f1765b54-a209-4718-8d38-a39237f502b3&limit=1000000')
df_raw_data['address'] = df_raw_data['block'] + ' ' + df_raw_data['street_name']
df_raw_data['quarter'] = df_raw_data['month'].apply(month_to_quarter)
df_raw_data['year_sold'] = df_raw_data['month'].apply((lambda x: int(x.split('-')[0])))
df_raw_data['month_sold'] = df_raw_data['month'].apply((lambda x: int(x.split('-')[1])))
df_raw_data['remaining_lease_years'] = df_raw_data['remaining_lease'].apply(lambda x: int(x.split()[0]))
df_raw_data['floor_area_sqft'] = round((df_raw_data['floor_area_sqm'].astype(float))*10.764)
df_price_index = get_data_singstat_price_index('https://tablebuilder.singstat.gov.sg/api/table/tabledata/M212161?isTestApi=true')
df_price_index = df_price_index.rename(columns = {'key':'quarter', 'value': 'index'})
df_price_index['quarter'] = df_price_index['quarter'].apply(lambda x : x.replace(' ', '-'))
df_selected_year = df_raw_data[df_raw_data['year_sold']>=data_year]
quarter_list = list(df_price_index['quarter'])
df_selected_year['quarter'] = df_selected_year['quarter'].apply(lambda x : x if x in quarter_list else quarter_list[-1])
df_selected_year = pd.merge(df_selected_year, df_price_index, how='left', on='quarter')
# convert to float
df_selected_year['index'] = pd.to_numeric(df_selected_year['index'])
df_selected_year['resale_price'] = pd.to_numeric(df_selected_year['resale_price'])
# normalised to latest price index
df_selected_year['normalised_resale_price'] = round(df_selected_year['resale_price']*float(df_price_index.tail(1)['index'])/df_selected_year['index'],0)
df_selected_year['price_psf'] = round(df_selected_year['normalised_resale_price']/df_selected_year['floor_area_sqft'])
df_selected_year['storey_range'] = df_selected_year['storey_range'] \
.str.replace('01 TO 03', 'Low Floor') \
.str.replace('04 TO 06', 'Mid Floor') \
.str.replace('07 TO 09', 'Mid Floor') \
.str.replace('10 TO 12', 'High Floor') \
.str.replace('13 TO 15', 'High Floor') \
.str.replace('16 TO 18', 'High Floor') \
.str.replace('19 TO 21', 'High Floor') \
.str.replace('22 TO 24', 'High Floor') \
.str.replace('25 TO 27', 'High Floor') \
.str.replace('25 TO 27', 'High Floor') \
.str.replace('25 TO 27', 'High Floor') \
.str.replace('28 TO 30', 'High Floor') \
.str.replace('31 TO 33', 'High Floor') \
.str.replace('34 TO 36', 'High Floor') \
.str.replace('37 TO 39', 'High Floor') \
.str.replace('40 TO 42', 'High Floor') \
.str.replace('43 TO 45', 'High Floor') \
.str.replace('46 TO 48', 'High Floor') \
.str.replace('49 TO 51', 'High Floor')
df_selected_year = df_selected_year.drop(columns=['street_name', 'resale_price', 'remaining_lease', 'lease_commence_date', 'block'])
HDB_address_list = df_selected_year['address'].unique().tolist()
data_list = []
for i in range(0, len(HDB_address_list)):
data = get_data_one_map(HDB_address_list[i])
if data is not None:
data_list.append(data)
df_HDB = pd.DataFrame.from_dict(data_list)
#creating primary key for df_HDB for further table join
df_HDB['LAT_LONG']= (df_HDB['LATITUDE'] +' '+ df_HDB['LONGITUDE']).apply(lambda x: tuple(x.split(' ')))
tmp_df = pd.read_csv('./MRT_LRT_STATION.csv')
MRT_list = tmp_df['Station'].unique().tolist()
print('Number of MRT stations:', len(MRT_list))
data_list = []
for i in range(0, len(MRT_list)):
data = get_data_one_map(MRT_list[i])
if data is not None:
data_list.append(data)
df_MRT = pd.DataFrame.from_dict(data_list)
df_MRT['LAT_LONG'] = (df_MRT['LATITUDE'] +' '+ df_MRT['LONGITUDE']).apply(lambda x: tuple(x.split(' ')))
df_MRT.to_pickle('df_MRT.pkl')
MRT_coordinates = df_MRT.T.iloc[-1,:].tolist()
df_HDB_coordinates = pd.DataFrame(df_HDB['LAT_LONG'])
df_HDB_coordinates = pd.DataFrame(df_HDB['LAT_LONG'])
for coordinates in MRT_coordinates:
df_HDB_coordinates[coordinates]=df_HDB['LAT_LONG'].apply(lambda y: geopy.distance.great_circle(y, coordinates).km)
# get the distance from each address to the nearest station
df_HDB_coordinates['distance_to_nearest_MRT_station'] = df_HDB_coordinates.iloc[:,1:].apply(lambda x: min(x), axis=1)
df_HDB_coordinates_with_MRT_distance = df_HDB_coordinates.iloc[:,[0,-1]]
df_HDB = pd.merge(df_HDB, df_HDB_coordinates_with_MRT_distance, on='LAT_LONG', how='left')
df_HDB = df_HDB.drop(columns=['SEARCHVAL', 'BUILDING', 'ADDRESS' ,'X', 'Y', 'LONGTITUDE'])
# City Hall: 1.29293672227779 103.852585580366
df_HDB['distance_to_city'] = df_HDB['LAT_LONG'].apply(lambda x: geopy.distance.great_circle((1.29293672227779, 103.852585580366), x).km)
df_HDB['address'] = df_HDB ['BLK_NO'] + ' ' + df_HDB ['ROAD_NAME']
df_HDB['address'] = df_HDB['address'] \
.str.replace('AVENUE', 'AVE') \
.str.replace('CRESCENT', 'CRES') \
.str.replace('ROAD', 'RD') \
.str.replace('STREET', 'ST') \
.str.replace('CENTRAL', 'CTRL') \
.str.replace('HEIGHTS', 'HTS') \
.str.replace('TERRACE', 'TER') \
.str.replace('JALAN', 'JLN') \
.str.replace('DRIVE', 'DR') \
.str.replace('PLACE', 'PL') \
.str.replace('CLOSE', 'CL') \
.str.replace('PARK', 'PK') \
.str.replace('GARDENS', 'GDNS') \
.str.replace('NORTH', 'NTH') \
.str.replace('SOUTH', 'STH') \
.str.replace('BUKIT', 'BT') \
.str.replace('UPPER', 'UPP}') \
.str.replace('COMMONWEALTH', "C'WEALTH")
df_clean_data = pd.merge(df_selected_year, df_HDB, on='address', how='left')
df_clean_data = df_clean_data.dropna(subset=['LAT_LONG'])
### FEATURE SELECTION ###
features = [
'flat_type',
'storey_range',
'floor_area_sqft',
'remaining_lease_years',
'distance_to_nearest_MRT_station',
'distance_to_city',
'price_psf']
df = df_clean_data[features]
df = pd.get_dummies(df)
### MODEL TRAINING AND TESTING ###
X = df.drop('price_psf', axis=1)
y = df['price_psf']
print('Average price_per_sqm:', y.mean())
print('Min price_per_sqm:', y.min())
print('Max price_per_sqm:', y.max())
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model_RFR = make_pipeline(StandardScaler(),RandomForestRegressor())
model_RFR.fit(X_train, y_train) # apply scaling on training data
model_RFR.score(X_test, y_test)
print('Mean Absolute Error:', mean_absolute_error(y_test, model_RFR.predict(X_test)))
print('Mean Squared Error:', mean_squared_error(y_test, model_RFR.predict(X_test)))
print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y_test, model_RFR.predict(X_test))))
f = open("model.log", "r")
data = f.readline()
model_score = float(data.split()[-1])
MSE = np.sqrt(mean_squared_error(y_test, model_RFR.predict(X_test)))
if MSE < model_score:
pickle.dump(model_RFR, open('model.sav', 'wb'))
f = open("model.log", "w")
f.write(f'model_score = {MSE}')
f.close() |