Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 11,807 Bytes
			
			| 938e515 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 | # Copyright (c) Facebook, Inc. and its affiliates.
import collections
from dataclasses import dataclass
from typing import Callable, List, Optional, Tuple
import torch
from torch import nn
from detectron2.structures import Boxes, Instances, ROIMasks
from detectron2.utils.registry import _convert_target_to_string, locate
from .torchscript_patch import patch_builtin_len
@dataclass
class Schema:
    """
    A Schema defines how to flatten a possibly hierarchical object into tuple of
    primitive objects, so it can be used as inputs/outputs of PyTorch's tracing.
    PyTorch does not support tracing a function that produces rich output
    structures (e.g. dict, Instances, Boxes). To trace such a function, we
    flatten the rich object into tuple of tensors, and return this tuple of tensors
    instead. Meanwhile, we also need to know how to "rebuild" the original object
    from the flattened results, so we can evaluate the flattened results.
    A Schema defines how to flatten an object, and while flattening it, it records
    necessary schemas so that the object can be rebuilt using the flattened outputs.
    The flattened object and the schema object is returned by ``.flatten`` classmethod.
    Then the original object can be rebuilt with the ``__call__`` method of schema.
    A Schema is a dataclass that can be serialized easily.
    """
    # inspired by FetchMapper in tensorflow/python/client/session.py
    @classmethod
    def flatten(cls, obj):
        raise NotImplementedError
    def __call__(self, values):
        raise NotImplementedError
    @staticmethod
    def _concat(values):
        ret = ()
        sizes = []
        for v in values:
            assert isinstance(v, tuple), "Flattened results must be a tuple"
            ret = ret + v
            sizes.append(len(v))
        return ret, sizes
    @staticmethod
    def _split(values, sizes):
        if len(sizes):
            expected_len = sum(sizes)
            assert (
                len(values) == expected_len
            ), f"Values has length {len(values)} but expect length {expected_len}."
        ret = []
        for k in range(len(sizes)):
            begin, end = sum(sizes[:k]), sum(sizes[: k + 1])
            ret.append(values[begin:end])
        return ret
@dataclass
class ListSchema(Schema):
    schemas: List[Schema]  # the schemas that define how to flatten each element in the list
    sizes: List[int]  # the flattened length of each element
    def __call__(self, values):
        values = self._split(values, self.sizes)
        if len(values) != len(self.schemas):
            raise ValueError(
                f"Values has length {len(values)} but schemas " f"has length {len(self.schemas)}!"
            )
        values = [m(v) for m, v in zip(self.schemas, values)]
        return list(values)
    @classmethod
    def flatten(cls, obj):
        res = [flatten_to_tuple(k) for k in obj]
        values, sizes = cls._concat([k[0] for k in res])
        return values, cls([k[1] for k in res], sizes)
@dataclass
class TupleSchema(ListSchema):
    def __call__(self, values):
        return tuple(super().__call__(values))
@dataclass
class IdentitySchema(Schema):
    def __call__(self, values):
        return values[0]
    @classmethod
    def flatten(cls, obj):
        return (obj,), cls()
@dataclass
class DictSchema(ListSchema):
    keys: List[str]
    def __call__(self, values):
        values = super().__call__(values)
        return dict(zip(self.keys, values))
    @classmethod
    def flatten(cls, obj):
        for k in obj.keys():
            if not isinstance(k, str):
                raise KeyError("Only support flattening dictionaries if keys are str.")
        keys = sorted(obj.keys())
        values = [obj[k] for k in keys]
        ret, schema = ListSchema.flatten(values)
        return ret, cls(schema.schemas, schema.sizes, keys)
@dataclass
class InstancesSchema(DictSchema):
    def __call__(self, values):
        image_size, fields = values[-1], values[:-1]
        fields = super().__call__(fields)
        return Instances(image_size, **fields)
    @classmethod
    def flatten(cls, obj):
        ret, schema = super().flatten(obj.get_fields())
        size = obj.image_size
        if not isinstance(size, torch.Tensor):
            size = torch.tensor(size)
        return ret + (size,), schema
@dataclass
class TensorWrapSchema(Schema):
    """
    For classes that are simple wrapper of tensors, e.g.
    Boxes, RotatedBoxes, BitMasks
    """
    class_name: str
    def __call__(self, values):
        return locate(self.class_name)(values[0])
    @classmethod
    def flatten(cls, obj):
        return (obj.tensor,), cls(_convert_target_to_string(type(obj)))
# if more custom structures needed in the future, can allow
# passing in extra schemas for custom types
def flatten_to_tuple(obj):
    """
    Flatten an object so it can be used for PyTorch tracing.
    Also returns how to rebuild the original object from the flattened outputs.
    Returns:
        res (tuple): the flattened results that can be used as tracing outputs
        schema: an object with a ``__call__`` method such that ``schema(res) == obj``.
             It is a pure dataclass that can be serialized.
    """
    schemas = [
        ((str, bytes), IdentitySchema),
        (list, ListSchema),
        (tuple, TupleSchema),
        (collections.abc.Mapping, DictSchema),
        (Instances, InstancesSchema),
        ((Boxes, ROIMasks), TensorWrapSchema),
    ]
    for klass, schema in schemas:
        if isinstance(obj, klass):
            F = schema
            break
    else:
        F = IdentitySchema
    return F.flatten(obj)
class TracingAdapter(nn.Module):
    """
    A model may take rich input/output format (e.g. dict or custom classes),
    but `torch.jit.trace` requires tuple of tensors as input/output.
    This adapter flattens input/output format of a model so it becomes traceable.
    It also records the necessary schema to rebuild model's inputs/outputs from flattened
    inputs/outputs.
    Example:
    ::
        outputs = model(inputs)   # inputs/outputs may be rich structure
        adapter = TracingAdapter(model, inputs)
        # can now trace the model, with adapter.flattened_inputs, or another
        # tuple of tensors with the same length and meaning
        traced = torch.jit.trace(adapter, adapter.flattened_inputs)
        # traced model can only produce flattened outputs (tuple of tensors)
        flattened_outputs = traced(*adapter.flattened_inputs)
        # adapter knows the schema to convert it back (new_outputs == outputs)
        new_outputs = adapter.outputs_schema(flattened_outputs)
    """
    flattened_inputs: Tuple[torch.Tensor] = None
    """
    Flattened version of inputs given to this class's constructor.
    """
    inputs_schema: Schema = None
    """
    Schema of the inputs given to this class's constructor.
    """
    outputs_schema: Schema = None
    """
    Schema of the output produced by calling the given model with inputs.
    """
    def __init__(
        self,
        model: nn.Module,
        inputs,
        inference_func: Optional[Callable] = None,
        allow_non_tensor: bool = False,
    ):
        """
        Args:
            model: an nn.Module
            inputs: An input argument or a tuple of input arguments used to call model.
                After flattening, it has to only consist of tensors.
            inference_func: a callable that takes (model, *inputs), calls the
                model with inputs, and return outputs. By default it
                is ``lambda model, *inputs: model(*inputs)``. Can be override
                if you need to call the model differently.
            allow_non_tensor: allow inputs/outputs to contain non-tensor objects.
                This option will filter out non-tensor objects to make the
                model traceable, but ``inputs_schema``/``outputs_schema`` cannot be
                used anymore because inputs/outputs cannot be rebuilt from pure tensors.
                This is useful when you're only interested in the single trace of
                execution (e.g. for flop count), but not interested in
                generalizing the traced graph to new inputs.
        """
        super().__init__()
        if isinstance(model, (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel)):
            model = model.module
        self.model = model
        if not isinstance(inputs, tuple):
            inputs = (inputs,)
        self.inputs = inputs
        self.allow_non_tensor = allow_non_tensor
        if inference_func is None:
            inference_func = lambda model, *inputs: model(*inputs)  # noqa
        self.inference_func = inference_func
        self.flattened_inputs, self.inputs_schema = flatten_to_tuple(inputs)
        if all(isinstance(x, torch.Tensor) for x in self.flattened_inputs):
            return
        if self.allow_non_tensor:
            self.flattened_inputs = tuple(
                [x for x in self.flattened_inputs if isinstance(x, torch.Tensor)]
            )
            self.inputs_schema = None
        else:
            for input in self.flattened_inputs:
                if not isinstance(input, torch.Tensor):
                    raise ValueError(
                        "Inputs for tracing must only contain tensors. "
                        f"Got a {type(input)} instead."
                    )
    def forward(self, *args: torch.Tensor):
        with torch.no_grad(), patch_builtin_len():
            if self.inputs_schema is not None:
                inputs_orig_format = self.inputs_schema(args)
            else:
                if len(args) != len(self.flattened_inputs) or any(
                    x is not y for x, y in zip(args, self.flattened_inputs)
                ):
                    raise ValueError(
                        "TracingAdapter does not contain valid inputs_schema."
                        " So it cannot generalize to other inputs and must be"
                        " traced with `.flattened_inputs`."
                    )
                inputs_orig_format = self.inputs
            outputs = self.inference_func(self.model, *inputs_orig_format)
            flattened_outputs, schema = flatten_to_tuple(outputs)
            flattened_output_tensors = tuple(
                [x for x in flattened_outputs if isinstance(x, torch.Tensor)]
            )
            if len(flattened_output_tensors) < len(flattened_outputs):
                if self.allow_non_tensor:
                    flattened_outputs = flattened_output_tensors
                    self.outputs_schema = None
                else:
                    raise ValueError(
                        "Model cannot be traced because some model outputs "
                        "cannot flatten to tensors."
                    )
            else:  # schema is valid
                if self.outputs_schema is None:
                    self.outputs_schema = schema
                else:
                    assert self.outputs_schema == schema, (
                        "Model should always return outputs with the same "
                        "structure so it can be traced!"
                    )
            return flattened_outputs
    def _create_wrapper(self, traced_model):
        """
        Return a function that has an input/output interface the same as the
        original model, but it calls the given traced model under the hood.
        """
        def forward(*args):
            flattened_inputs, _ = flatten_to_tuple(args)
            flattened_outputs = traced_model(*flattened_inputs)
            return self.outputs_schema(flattened_outputs)
        return forward
 |