File size: 7,297 Bytes
6f9cada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import pipeline

# Inference client setup
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
pipe = pipeline("text-generation", "microsoft/Phi-3.5-mini-instruct", torch_dtype=torch.bfloat16, device_map="auto")

# Global flag to handle cancellation
stop_inference = False

def respond(
    message,
    history: list[tuple[str, str]],
    system_message="You are a friendly Chatbot. Your job is to assist users in emergencies so reply fast but accuratly.",
    max_tokens=2048,
    temperature=0.7,
    top_p=0.95,
    use_local_model=False,
):
    global stop_inference
    stop_inference = False  # Reset cancellation flag

    # Initialize history if it's None
    if history is None:
        history = []

    if use_local_model:
        # local inference 
        messages = [{"role": "system", "content": system_message}]
        for val in history:
            if val[0]:
                messages.append({"role": "user", "content": val[0]})
            if val[1]:
                messages.append({"role": "assistant", "content": val[1]})
        messages.append({"role": "user", "content": message})

        response = ""
        for output in pipe(
            messages,
            max_new_tokens=max_tokens,
            temperature=temperature,
            do_sample=True,
            top_p=top_p,
        ):
            if stop_inference:
                response = "Inference cancelled."
                yield history + [(message, response)]
                return
            token = output['generated_text'][-1]['content']
            response += token
            yield history + [(message, response)]  # Yield history + new response

    else:
        # API-based inference 
        messages = [{"role": "system", "content": system_message}]
        for val in history:
            if val[0]:
                messages.append({"role": "user", "content": val[0]})
            if val[1]:
                messages.append({"role": "assistant", "content": val[1]})
        messages.append({"role": "user", "content": message})

        response = ""
        for message_chunk in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            if stop_inference:
                response = "Inference cancelled."
                yield history + [(message, response)]
                return
            if stop_inference:
                response = "Inference cancelled."
                break
            token = message_chunk.choices[0].delta.content
            response += token
            yield history + [(message, response)]  # Yield history + new response


def cancel_inference():
    global stop_inference
    stop_inference = True

def clear_conversation():
    return None

# Custom CSS for an enhanced look
custom_css = """
body {
    font-family: 'Roboto', sans-serif;
    background-color: #f5f7fa;
}
#main-container {
    max-width: 900px;
    margin: 0 auto;
    padding: 20px;
    background: white;
    box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
    border-radius: 15px;
}
.gradio-container {
    margin-top: 20px;
}
.gr-button {
    background-color: #4a90e2;
    color: white;
    border: none;
    border-radius: 5px;
    padding: 10px 20px;
    cursor: pointer;
    transition: all 0.3s ease;
    font-weight: bold;
}
.gr-button:hover {
    background-color: #357abd;
    transform: translateY(-2px);
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.gr-button.secondary {
    background-color: #f0f0f0;
    color: #333;
}
.gr-button.secondary:hover {
    background-color: #e0e0e0;
}
.gr-button.cancel {
    background-color: #e74c3c;
}
.gr-button.cancel:hover {
    background-color: #c0392b;
}
.gr-form {
    border: 1px solid #e0e0e0;
    padding: 15px;
    border-radius: 10px;
    background-color: #f9f9f9;
}
.gr-box {
    border-radius: 8px;
    border: 1px solid #e0e0e0;
}
.gr-padded {
    padding: 15px;
}
.gr-chat {
    font-size: 16px;
    border: 1px solid #e0e0e0;
    border-radius: 10px;
    overflow: hidden;
}
.gr-chat .message {
    padding: 10px 15px;
    border-bottom: 1px solid #f0f0f0;
}
.gr-chat .user {
    background-color: #e8f0fe;
}
.gr-chat .bot {
    background-color: #ffffff;
}
#title {
    text-align: center;
    font-size: 2.5em;
    margin-bottom: 20px;
    color: #2c3e50;
    text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
"""

# Define the interface
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("<h1 id='title'>🤖 EMERGENCY RESPONSE BOT 🚀</h1>")
    gr.Markdown("Engage in a conversation with our AI chatbot using customizable settings. \n It's a demo bot for a emergency response system. \n NOTE: This bot was made for educational purposes only and should not be used in real emergencies.")

    with gr.Row():
        with gr.Column(scale=2):
            chat_history = gr.Chatbot(label="Chat", height=500)
            user_input = gr.Textbox(show_label=False, placeholder="Type your message here...", lines=2)
            with gr.Row():
                submit_button = gr.Button("Send", variant="primary")
                cancel_button = gr.Button("Cancel", variant="stop")
                clear_button = gr.Button("Clear Chat", variant="secondary")
        
        with gr.Column(scale=1):
            with gr.Accordion("Advanced Settings", open=False):
                system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message", interactive=True)
                use_local_model = gr.Checkbox(label="Use Local Model", value=False)
                max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
                temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
                top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
            
            with gr.Accordion("Chat Information", open=True):
                message_count = gr.Number(label="Messages in Conversation", value=0, interactive=False)
                word_count = gr.Number(label="Total Words", value=0, interactive=False)

    # Event handlers
    submit_button.click(respond, 
                        [user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model], 
                        [chat_history])
    user_input.submit(respond, 
                      [user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model], 
                      [chat_history])
    cancel_button.click(cancel_inference)
    clear_button.click(clear_conversation, outputs=[chat_history])

    # Update chat information
    def update_chat_info(history):
        if history is None:
            return 0, 0
        message_count = len(history)
        word_count = sum(len(msg[0].split()) + len(msg[1].split()) for msg in history)
        return message_count, word_count

    chat_history.change(update_chat_info, inputs=[chat_history], outputs=[message_count, word_count])

if __name__ == "__main__":
    demo.launch(share=False)  # Remove share=True because it's not supported on HF Spaces