Spaces:
Runtime error
Runtime error
File size: 14,314 Bytes
1601dd7 4a930da 1601dd7 f8304fa 1601dd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import streamlit as st
import folium
from streamlit_folium import folium_static
import requests
import tempfile
import os
import shutil
import zipfile
from PIL import Image
import numpy as np
import io
import gdown
import pandas as pd
import time
import tensorflow as tf
import matplotlib
from tensorflow import keras
from tensorflow.keras.preprocessing.image import img_to_array, array_to_img
import matplotlib.pyplot as plt
# url = 'https://drive.google.com/uc?id=1DBl_LcIC3-a09bgGqRPAsQsLCbl9ZPJX'
url = 'https://drive.google.com/uc?id=1PpaFM7tjZQ9LuICfNmITrbbJnq4SFGnK'
output = 'model_vgg_fine_ind_grad.h5'
gdown.download(url, output, quiet=True)
@st.cache_resource()
def load_model():
model = tf.keras.models.load_model('model_vgg_fine_ind_grad.h5')
return model
# model = tf.keras.models.load_model('model_resnet_fine_ind.h5')
mapbox_token = 'pk.eyJ1IjoiYWRpdGktMTgiLCJhIjoiY2xsZ2dlcm9zMHRiMzNkcWF2MmFjZTc3biJ9.axO4l5PRwHHn2H3wEE-cEg'
def get_static_map_image(latitude, longitude, api):
# Replace with your Google Maps API Key
base_url = 'https://maps.googleapis.com/maps/api/staticmap'
params = {
'center': f'{latitude},{longitude}',
'zoom': 17, # You can adjust the zoom level as per your requirement
'size': '256x276', # You can adjust the size of the image as per your requirement
'maptype': 'satellite',
'key': api,
}
response = requests.get(base_url, params=params)
return response.content
def create_map():
india_map = folium.Map(
location=[20.5937, 78.9629],
zoom_start=5,
control_scale=True
)
# Add Mapbox tiles with 'Mapbox Satellite' style
folium.TileLayer(
tiles=f"https://api.mapbox.com/styles/v1/mapbox/satellite-v9/tiles/{{z}}/{{x}}/{{y}}?access_token={mapbox_token}",
attr="Mapbox Satellite",
name="Mapbox Satellite"
).add_to(india_map)
return india_map
def imgs_input_fn(images):
img_size = (224, 224)
img_size_tensor = tf.constant(img_size, dtype=tf.int32)
images = tf.convert_to_tensor(value = images)
images = tf.image.resize(images, size=img_size_tensor)
return images
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
# First, we create a model that maps the input image to the activations
# of the last conv layer as well as the output predictions
grad_model = keras.models.Model(
model.inputs, [model.get_layer(last_conv_layer_name).output, model.output]
)
# Then, we compute the gradient of the top predicted class for our input image
# with respect to the activations of the last conv layer
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
# This is the gradient of the output neuron (top predicted or chosen)
# with regard to the output feature map of the last conv layer
grads = tape.gradient(class_channel, last_conv_layer_output)
# This is a vector where each entry is the mean intensity of the gradient
# over a specific feature map channel
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
# We multiply each channel in the feature map array
# by "how important this channel is" with regard to the top predicted class
# then sum all the channels to obtain the heatmap class activation
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
# For visualization purpose, we will also normalize the heatmap between 0 & 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
def save_and_display_gradcam(img_array, heatmap, alpha=0.4):
img = img_array
heatmap = np.uint8(255 * heatmap)
jet = matplotlib.colormaps["jet"]
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
jet_heatmap = array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = img_to_array(jet_heatmap)
superimposed_img = jet_heatmap * alpha + img
superimposed_img = array_to_img(superimposed_img)
return superimposed_img
def main():
hide_st_style = """
<style>
body {
background-color: black;
color: white;
}
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
model = load_model()
st.title("Brick Kiln Detector")
st.write("This app uses a deep learning model to detect brick kilns in satellite images. The app allows you to select certain area on a map and download the images of brick kilns and non-brick kilns in that region.")
st.sidebar.title("Search Location")
lat = st.sidebar.number_input("Latitude:", value=20.5937, step=0.000001)
lon = st.sidebar.number_input("Longitude:", value=78.9629, step=0.000001)
india_map = create_map()
india_map.location = [lat, lon]
# Add marker for selected latitude and longitude
folium.Marker(
location=[lat, lon],
popup=f"Latitude: {lat}, Longitude: {lon}",
icon=folium.Icon(color='blue')
).add_to(india_map)
# Initialize variables to store user-drawn polygons
drawn_polygons = []
# Specify the latitude and longitude for the rectangular bounding box
st.sidebar.title("Bounding Box")
box_lat1 = st.sidebar.number_input("Latitude 1:", value=28.74, step=0.000001)
box_lon1 = st.sidebar.number_input("Longitude 1:", value=77.60, step=0.000001)
box_lat2 = st.sidebar.number_input("Latitude 2:", value=28.90, step=0.000001)
box_lon2 = st.sidebar.number_input("Longitude 2:", value=77.90, step=0.000001)
# Add the rectangular bounding box to the map
bounding_box_polygon = folium.Rectangle(
bounds=[[box_lat1, box_lon1], [box_lat2, box_lon2]],
color='red',
fill=True,
fill_opacity=0.2,
)
bounding_box_polygon.add_to(india_map)
drawn_polygons.append(bounding_box_polygon.get_bounds())
df = pd.DataFrame(columns = ['Latitude', 'Longitude'])
# Display the map as an image using st.image()
folium_static(india_map)
ab = st.text_input("API key?", "") # AIzaSyCBGIlzrt1yWOzXU7L3_2eaSJcxFHiedz0
with st.expander("Instructions"):
st.write("1. Enter the latitude and longitude of the bounding box in the sidebar.\n"
"2. Enter Google Maps API key in the text box below.\n"
"3. Click on submit and wait for the results to load.\n"
"4. Download the images and CSV file using the download buttons below.")
if ab and st.button("Submit"):
st.session_state.ab = ab
image_array_list = []
latitudes = []
longitudes = []
idx = 0
lat_1 = drawn_polygons[0][0][0]
lon_1 = drawn_polygons[0][0][1]
lat_2 = drawn_polygons[0][1][0]
lon_2 = drawn_polygons[0][1][1]
delta_lat = 0.138
delta_lon = 0.0023
latitude = lat_1
longitude = lon_1
with st.spinner('Please wait while we process your request...'):
while latitude <= lat_2:
while longitude <= lon_2:
image_data = get_static_map_image(latitude, longitude, ab)
image = Image.open(io.BytesIO(image_data))
# Get the size of the image (width, height)
width, height = image.size
new_height = height - 20
# Define the cropping box (left, upper, right, lower)
crop_box = (0, 0, width, new_height)
# Crop the image
image = image.crop(crop_box)
new_width = 224
new_height = 224
# Define the resizing box (left, upper, right, lower)
resize_box = (0, 0, new_width, new_height)
# Resize the image
image = image.resize((new_width, new_height), Image.LANCZOS)
if image.mode != 'RGB':
image = image.convert('RGB')
image_np_array = np.array(image)
# image_np_array = np.array(image)
image_array_list.append(image_np_array)
latitudes.append(latitude)
longitudes.append(longitude)
idx += 1
longitude += delta_lon
print(idx)
latitude += delta_lat
images = np.stack(image_array_list, axis=0)
# images = imgs_input_fn(image_array_list)
predictions_prob = model.predict(images)
predictions = [[1 if element >= 0.5 else 0 for element in sublist] for sublist in predictions_prob]
flat_modified_list = [element for sublist in predictions for element in sublist]
indices_of_ones = [index for index, element in enumerate(flat_modified_list) if element == 1]
indices_of_zeros = [index for index, element in enumerate(flat_modified_list) if element == 0]
temp_dir1 = tempfile.mkdtemp() # Create a temporary directory to store the images
with zipfile.ZipFile('images_kiln.zip', 'w') as zipf:
for i in indices_of_ones:
temp_df = pd.DataFrame({'Latitude': [latitudes[i]], 'Longitude': [longitudes[i]]})
# Concatenate the temporary DataFrame with the main DataFrame
df = pd.concat([df, temp_df], ignore_index=True)
image_filename = f'kiln_{latitudes[i]}_{longitudes[i]}.png'
image_path = os.path.join(temp_dir1, image_filename)
pil_image = Image.fromarray(image_array_list[i])
pil_image.save(image_path, format='PNG')
zipf.write(image_path, arcname=image_filename)
temp_dir2 = tempfile.mkdtemp() # Create a temporary directory to store the images
with zipfile.ZipFile('images_no_kiln.zip', 'w') as zipf:
for i in indices_of_zeros:
image_filename = f'kiln_{latitudes[i]}_{longitudes[i]}.png'
image_path = os.path.join(temp_dir2, image_filename)
pil_image = Image.fromarray(image_array_list[i])
pil_image.save(image_path, format='PNG')
zipf.write(image_path, arcname=image_filename)
csv = df.to_csv(index=False).encode('utf-8')
count_ones = sum(1 for element in flat_modified_list if element == 1)
count_zeros = sum(1 for element in flat_modified_list if element == 0)
st.write("The number of brick kilns in the selected region is: ", count_ones)
st.write("The number of non-brick kilns in the selected region is: ", count_zeros)
with st.expander("Download Options"):
with open('images_kiln.zip', 'rb') as zip_file:
zip_data = zip_file.read()
st.download_button(
label="Download Kiln Images",
data=zip_data,
file_name='images_kiln.zip',
mime="application/zip"
)
with open('images_no_kiln.zip', 'rb') as zip_file:
zip_data = zip_file.read()
st.download_button(
label="Download Non-Kiln Images",
data=zip_data,
file_name='images_no_kiln.zip',
mime="application/zip"
)
st.download_button(label =
"Download CSV of latitude and longitude of brick kilns",
data = csv,
file_name = "lat_long.csv",
mime = "text/csv"
)
# Cleanup: Remove the temporary directory and zip file
shutil.rmtree(temp_dir1)
os.remove('images_kiln.zip')
shutil.rmtree(temp_dir2)
os.remove('images_no_kiln.zip')
############## GradCAM ##############
last_conv_layer_name = "block5_conv3"
st.write("Let's see how well our model is identifying the pattern of brick kilns in the images.")
for idx in indices_of_ones:
st.write("Predicted Label: ", predictions[idx][0] , " and Predicted Probability: ", predictions_prob[idx][0])
# Load and preprocess the original image
img_array = images[idx:idx+1]
# Create a figure and axes for the images
fig, axs = plt.subplots(1, 3, figsize=(15, 5), gridspec_kw={'width_ratios': [1.2, 1.2, 1.44]})
# Display the original image
axs[0].imshow(images[idx])
axs[0].set_title('Original Image')
# Preprocess the image for GradCAM
img_array = imgs_input_fn(img_array)
# Generate class activation heatmap
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name)
# Display the heatmap with a color bar
heatmap_plot = axs[1].imshow(heatmap, cmap='jet')
axs[1].set_title('Heatmap')
# Generate and display the GradCAM superimposed image
grad_fig = save_and_display_gradcam(images[idx], heatmap)
axs[2].imshow(grad_fig)
axs[2].set_title('GradCAM Superimposed')
cbar = plt.colorbar(heatmap_plot, ax=axs[2], pad=0.02)
cbar.set_label('Heatmap Intensity')
for ax in axs:
ax.axis('off')
plt.tight_layout()
st.pyplot(fig)
else:
st.sidebar.warning("Please enter an API key.")
if __name__ == "__main__":
main()
|