Spaces:
Sleeping
Sleeping
File size: 3,812 Bytes
4d6e8c2 913c2f6 4d6e8c2 913c2f6 1c33274 70f5f26 1c33274 70f5f26 913c2f6 4d6e8c2 70f5f26 913c2f6 4d6e8c2 af1305d 4d6e8c2 76fccaf 4d6e8c2 70f5f26 4d6e8c2 913c2f6 d30e1fd 913c2f6 4d6e8c2 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
#modified: additional lib
import tensorflow as tf
from huggingface_hub import hf_hub_download
from transformers import TFElectraForSequenceClassification, ElectraTokenizer, ElectraConfig
#
router = APIRouter()
DESCRIPTION = "Finetuned ELECTRA"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Finetuned ELECTRA
"""
#modified: retrieve model
model_repo = "jennasparks/electra_tf"
config = ElectraConfig.from_pretrained(model_repo)
model = TFElectraForSequenceClassification.from_pretrained(model_repo)
tokenizer = ElectraTokenizer.from_pretrained("google/electra-base-discriminator")
#
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
#make predictions
predictions = []
for i in range(len(test_dataset["quote"])):
encoded_input = tokenizer(test_dataset["quote"][i], truncation=True, padding=True, return_tensors="tf")
outputs = model(encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"], training=False)
predictions.append(tf.argmax(outputs.logits, axis=1))
# Get true labels
true_labels = test_dataset["label"]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |