File size: 7,978 Bytes
21d3461
a40e67a
4f55ca2
5e91161
 
a40e67a
5e91161
 
 
 
4f55ca2
 
a40e67a
5e91161
 
a40e67a
 
 
4f55ca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e207f0
4f55ca2
 
 
 
 
 
 
 
 
7e207f0
4f55ca2
 
 
 
 
 
 
 
 
7e207f0
4f55ca2
 
 
 
 
 
 
 
 
 
 
7e207f0
4f55ca2
 
 
 
 
 
 
7e207f0
 
 
 
 
 
 
 
 
 
 
 
a40e67a
 
 
 
 
7e207f0
a40e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e207f0
 
 
 
 
 
f6eb5e3
a40e67a
 
7e207f0
a40e67a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e207f0
 
 
 
 
 
 
 
 
 
 
 
 
21d3461
 
 
 
 
 
 
 
7e207f0
 
 
 
 
 
 
 
21d3461
 
7e207f0
21d3461
 
 
 
7e207f0
a40e67a
21d3461
 
 
 
7e207f0
a40e67a
21d3461
 
 
 
7e207f0
21d3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ead791
7e207f0
 
 
5ead791
7e207f0
5ead791
7e207f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d3461
 
 
 
 
 
 
 
7e207f0
 
 
 
 
 
 
 
 
 
 
 
 
 
21d3461
7e207f0
 
 
 
 
 
a40e67a
8e05eba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
from concurrent.futures import ThreadPoolExecutor, as_completed

import clip
import h5py
import ml_collections
import numpy as np
import open_clip
import streamlit as st
import torch
from huggingface_hub import hf_hub_download

from app_lib.ckde import cKDE
from app_lib.utils import SUPPORTED_MODELS
from ibydmt.test import xSKIT

rng = np.random.default_rng()


def _get_open_clip_model(model_name, device):
    backbone = model_name.split(":")[-1]

    model, _, preprocess = open_clip.create_model_and_transforms(
        SUPPORTED_MODELS[model_name], device=device
    )
    model.eval()
    tokenizer = open_clip.get_tokenizer(backbone)
    return model, preprocess, tokenizer


def _get_clip_model(model_name, device):
    backbone = model_name.split(":")[-1]
    model, preprocess = clip.load(backbone, device=device)
    tokenizer = clip.tokenize
    return model, preprocess, tokenizer


def _load_model(model_name, device):
    if "open_clip" in model_name:
        model, preprocess, tokenizer = _get_open_clip_model(model_name, device)
    elif "clip" in model_name:
        model, preprocess, tokenizer = _get_clip_model(model_name, device)
    return model, preprocess, tokenizer


@torch.no_grad()
@torch.cuda.amp.autocast()
def _encode_concepts(tokenizer, model, concepts, device):
    concepts_text = tokenizer(concepts).to(device)

    concept_features = model.encode_text(concepts_text)
    concept_features /= torch.linalg.norm(concept_features, dim=-1, keepdim=True)
    return concept_features.cpu().numpy()


@torch.no_grad()
@torch.cuda.amp.autocast()
def _encode_image(model, preprocess, image, device):
    image = preprocess(image)
    image = image.unsqueeze(0)
    image = image.to(device)

    image_features = model.encode_image(image)
    image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy()


@torch.no_grad()
@torch.cuda.amp.autocast()
def _encode_class_name(tokenizer, model, class_name, device):
    class_text = tokenizer([f"A photo of a {class_name}"]).to(device)

    class_features = model.encode_text(class_text)
    class_features /= torch.linalg.norm(class_features, dim=-1, keepdim=True)
    return class_features.cpu().numpy()


def _load_dataset(dataset_name, model_name):
    dataset_path = hf_hub_download(
        repo_id="jacopoteneggi/IBYDMT",
        filename=f"{dataset_name}_{model_name}_train.h5",
        repo_type="dataset",
    )

    with h5py.File(dataset_path, "r") as dataset:
        embedding = dataset["embedding"][:]
    return embedding


def _sample_random_subset(concept_idx, concepts, cardinality):
    sample_idx = list(set(range(len(concepts))) - {concept_idx})
    return rng.permutation(sample_idx)[:cardinality].tolist()


def _test(testing_config, z, concept_idx, concepts, cardinality, sampler, classifier):
    def cond_p(z, cond_idx, m):
        _, sample_h = sampler.sample(z, cond_idx, m=m)
        return sample_h

    def f(h):
        output = h @ classifier.T
        return output.squeeze()

    rejected_hist, tau_hist, wealth_hist, subset_hist = [], [], [], []
    for _ in range(testing_config.r):
        subset_idx = _sample_random_subset(concept_idx, concepts, cardinality)
        subset = [concepts[idx] for idx in subset_idx]

        tester = xSKIT(testing_config)
        rejected, tau = tester.test(
            z,
            concept_idx,
            subset_idx,
            cond_p,
            f,
            interrupt_on="max_wealth",
            max_wealth=3 * 1 / testing_config.significance_level,
        )
        wealth = tester.wealth._wealth
        wealth = wealth + [wealth[-1]] * (testing_config.tau_max - len(wealth))

        rejected_hist.append(rejected)
        tau_hist.append(tau)
        wealth_hist.append(wealth)
        subset_hist.append(subset)

    return {
        "concept": concepts[concept_idx],
        "rejected": rejected_hist,
        "tau": tau_hist,
        "wealth": wealth_hist,
        "subset": subset_hist,
    }


def get_testing_config(**kwargs):
    testing_config = st.session_state.testing_config = ml_collections.ConfigDict()
    testing_config.significance_level = kwargs.get("significance_level", 0.05)
    testing_config.wealth = kwargs.get("wealth", "ons")
    testing_config.bet = kwargs.get("bet", "tanh")
    testing_config.kernel = kwargs.get("kernel", "rbf")
    testing_config.kernel_scale_method = kwargs.get("kernel_scale_method", "quantile")
    testing_config.kernel_scale = kwargs.get("kernel_scale", 0.5)
    testing_config.tau_max = kwargs.get("tau_max", 200)
    testing_config.r = kwargs.get("r", 10)
    return testing_config


def load_precomputed_results(image_name):
    results = np.load(
        os.path.join("assets", "results", f"{image_name.split('.')[0]}.npy"),
        allow_pickle=True,
    ).item()
    return results


def test(
    testing_config,
    image,
    class_name,
    concepts,
    cardinality,
    dataset_name,
    model_name,
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
    with_streamlit=True,
):
    if with_streamlit:
        with st.spinner("Loading model"):
            model, preprocess, tokenizer = _load_model(model_name, device)
    else:
        model, preprocess, tokenizer = _load_model(model_name, device)

    if with_streamlit:
        with st.spinner("Encoding concepts"):
            cbm = _encode_concepts(tokenizer, model, concepts, device)
    else:
        cbm = _encode_concepts(tokenizer, model, concepts, device)

    if with_streamlit:
        with st.spinner("Encoding image"):
            h = _encode_image(model, preprocess, image, device)
    else:
        h = _encode_image(model, preprocess, image, device)
    z = h @ cbm.T
    z = z.squeeze()

    if with_streamlit:
        progress_bar = st.progress(
            0,
            text=(
                "Testing concepts (can take up to a minute) [0 /"
                f" {len(concepts)} completed]"
            ),
        )
        progress_bar.progress(
            1 / (len(concepts) + 1),
            text=(
                "Testing concepts (can take up to a minute) [0 /"
                f" {len(concepts)} completed]"
            ),
        )

    embedding = _load_dataset(dataset_name, model_name)
    semantics = embedding @ cbm.T
    sampler = cKDE(embedding, semantics)

    classifier = _encode_class_name(tokenizer, model, class_name, device)

    with ThreadPoolExecutor() as executor:
        futures = [
            executor.submit(
                _test,
                testing_config,
                z,
                concept_idx,
                concepts,
                cardinality,
                sampler,
                classifier,
            )
            for concept_idx in range(len(concepts))
        ]

        results = []
        for idx, future in enumerate(as_completed(futures)):
            results.append(future.result())
            if with_streamlit:
                progress_bar.progress(
                    (idx + 2) / (len(concepts) + 1),
                    text=(
                        f"Testing concepts (can take up to a minute) [{idx + 1} /"
                        f" {len(concepts)} completed]"
                    ),
                )

    rejected = np.empty((testing_config.r, len(concepts)))
    tau = np.empty((testing_config.r, len(concepts)))
    wealth = np.empty((testing_config.r, testing_config.tau_max, len(concepts)))

    for _results in results:
        concept_idx = concepts.index(_results["concept"])

        rejected[:, concept_idx] = np.array(_results["rejected"])
        tau[:, concept_idx] = np.array(_results["tau"])
        wealth[:, :, concept_idx] = np.array(_results["wealth"])

    tau /= testing_config.tau_max

    results = {
        "significance_level": testing_config.significance_level,
        "concepts": concepts,
        "rejected": rejected,
        "tau": tau,
        "wealth": wealth,
    }

    return results