File size: 3,905 Bytes
890b333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Utilities for bounding box manipulation and GIoU.
"""
import torch
from torchvision.ops.boxes import box_area


def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(-1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=-1)


def box_xyxy_to_cxcywh(x):
    x0, y0, x1, y1 = x.unbind(-1)
    b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
    return torch.stack(b, dim=-1)


# modified from torchvision to also return the union
def box_iou(boxes1, boxes2):
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    # import ipdb; ipdb.set_trace()
    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    iou = inter / (union + 1e-6)
    return iou, union


def generalized_box_iou(boxes1, boxes2):
    """
    Generalized IoU from https://giou.stanford.edu/

    The boxes should be in [x0, y0, x1, y1] format

    Returns a [N, M] pairwise matrix, where N = len(boxes1)
    and M = len(boxes2)
    """
    # degenerate boxes gives inf / nan results
    # so do an early check
    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
    # except:
    #     import ipdb; ipdb.set_trace()
    iou, union = box_iou(boxes1, boxes2)

    lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
    rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    area = wh[:, :, 0] * wh[:, :, 1]

    return iou - (area - union) / (area + 1e-6)


# modified from torchvision to also return the union
def box_iou_pairwise(boxes1, boxes2):
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, :2], boxes2[:, :2])  # [N,2]
    rb = torch.min(boxes1[:, 2:], boxes2[:, 2:])  # [N,2]

    wh = (rb - lt).clamp(min=0)  # [N,2]
    inter = wh[:, 0] * wh[:, 1]  # [N]

    union = area1 + area2 - inter

    iou = inter / union
    return iou, union


def generalized_box_iou_pairwise(boxes1, boxes2):
    """
    Generalized IoU from https://giou.stanford.edu/

    Input:
        - boxes1, boxes2: N,4
    Output:
        - giou: N, 4
    """
    # degenerate boxes gives inf / nan results
    # so do an early check
    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
    assert boxes1.shape == boxes2.shape
    iou, union = box_iou_pairwise(boxes1, boxes2)  # N, 4

    lt = torch.min(boxes1[:, :2], boxes2[:, :2])
    rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])

    wh = (rb - lt).clamp(min=0)  # [N,2]
    area = wh[:, 0] * wh[:, 1]

    return iou - (area - union) / area


def masks_to_boxes(masks):
    """Compute the bounding boxes around the provided masks

    The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.

    Returns a [N, 4] tensors, with the boxes in xyxy format
    """
    if masks.numel() == 0:
        return torch.zeros((0, 4), device=masks.device)

    h, w = masks.shape[-2:]

    y = torch.arange(0, h, dtype=torch.float)
    x = torch.arange(0, w, dtype=torch.float)
    y, x = torch.meshgrid(y, x)

    x_mask = masks * x.unsqueeze(0)
    x_max = x_mask.flatten(1).max(-1)[0]
    x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]

    y_mask = masks * y.unsqueeze(0)
    y_max = y_mask.flatten(1).max(-1)[0]
    y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]

    return torch.stack([x_min, y_min, x_max, y_max], 1)


if __name__ == "__main__":
    x = torch.rand(5, 4)
    y = torch.rand(3, 4)
    iou, union = box_iou(x, y)
    import ipdb

    ipdb.set_trace()