File size: 36,805 Bytes
890b333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
# ------------------------------------------------------------------------
# Grounding DINO
# url: https://github.com/IDEA-Research/GroundingDINO
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# DINO
# Copyright (c) 2022 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Conditional DETR Transformer class.
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------

from typing import Optional

import torch
import torch.utils.checkpoint as checkpoint
from torch import Tensor, nn

from groundingdino.util.misc import inverse_sigmoid

from .fuse_modules import BiAttentionBlock
from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
from .transformer_vanilla import TransformerEncoderLayer
from .utils import (
    MLP,
    _get_activation_fn,
    _get_clones,
    gen_encoder_output_proposals,
    gen_sineembed_for_position,
    get_sine_pos_embed,
)


class Transformer(nn.Module):
    def __init__(
        self,
        d_model=256,
        nhead=8,
        num_queries=300,
        num_encoder_layers=6,
        num_unicoder_layers=0,
        num_decoder_layers=6,
        dim_feedforward=2048,
        dropout=0.0,
        activation="relu",
        normalize_before=False,
        return_intermediate_dec=False,
        query_dim=4,
        num_patterns=0,
        # for deformable encoder
        num_feature_levels=1,
        enc_n_points=4,
        dec_n_points=4,
        # init query
        learnable_tgt_init=False,
        # two stage
        two_stage_type="no",  # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
        embed_init_tgt=False,
        # for text
        use_text_enhancer=False,
        use_fusion_layer=False,
        use_checkpoint=False,
        use_transformer_ckpt=False,
        use_text_cross_attention=False,
        text_dropout=0.1,
        fusion_dropout=0.1,
        fusion_droppath=0.0,
    ):
        super().__init__()
        self.num_feature_levels = num_feature_levels
        self.num_encoder_layers = num_encoder_layers
        self.num_unicoder_layers = num_unicoder_layers
        self.num_decoder_layers = num_decoder_layers
        self.num_queries = num_queries
        assert query_dim == 4

        # choose encoder layer type
        encoder_layer = DeformableTransformerEncoderLayer(
            d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points
        )

        if use_text_enhancer:
            text_enhance_layer = TransformerEncoderLayer(
                d_model=d_model,
                nhead=nhead // 2,
                dim_feedforward=dim_feedforward // 2,
                dropout=text_dropout,
            )
        else:
            text_enhance_layer = None

        if use_fusion_layer:
            feature_fusion_layer = BiAttentionBlock(
                v_dim=d_model,
                l_dim=d_model,
                embed_dim=dim_feedforward // 2,
                num_heads=nhead // 2,
                dropout=fusion_dropout,
                drop_path=fusion_droppath,
            )
        else:
            feature_fusion_layer = None

        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        assert encoder_norm is None
        self.encoder = TransformerEncoder(
            encoder_layer,
            num_encoder_layers,
            d_model=d_model,
            num_queries=num_queries,
            text_enhance_layer=text_enhance_layer,
            feature_fusion_layer=feature_fusion_layer,
            use_checkpoint=use_checkpoint,
            use_transformer_ckpt=use_transformer_ckpt,
        )

        # choose decoder layer type
        decoder_layer = DeformableTransformerDecoderLayer(
            d_model,
            dim_feedforward,
            dropout,
            activation,
            num_feature_levels,
            nhead,
            dec_n_points,
            use_text_cross_attention=use_text_cross_attention,
        )

        decoder_norm = nn.LayerNorm(d_model)
        self.decoder = TransformerDecoder(
            decoder_layer,
            num_decoder_layers,
            decoder_norm,
            return_intermediate=return_intermediate_dec,
            d_model=d_model,
            query_dim=query_dim,
            num_feature_levels=num_feature_levels,
        )

        self.d_model = d_model
        self.nhead = nhead
        self.dec_layers = num_decoder_layers
        self.num_queries = num_queries  # useful for single stage model only
        self.num_patterns = num_patterns
        if not isinstance(num_patterns, int):
            Warning("num_patterns should be int but {}".format(type(num_patterns)))
            self.num_patterns = 0

        if num_feature_levels > 1:
            if self.num_encoder_layers > 0:
                self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
            else:
                self.level_embed = None

        self.learnable_tgt_init = learnable_tgt_init
        assert learnable_tgt_init, "why not learnable_tgt_init"
        self.embed_init_tgt = embed_init_tgt
        if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"):
            self.tgt_embed = nn.Embedding(self.num_queries, d_model)
            nn.init.normal_(self.tgt_embed.weight.data)
        else:
            self.tgt_embed = None

        # for two stage
        self.two_stage_type = two_stage_type
        assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
            two_stage_type
        )
        if two_stage_type == "standard":
            # anchor selection at the output of encoder
            self.enc_output = nn.Linear(d_model, d_model)
            self.enc_output_norm = nn.LayerNorm(d_model)
            self.two_stage_wh_embedding = None

        if two_stage_type == "no":
            self.init_ref_points(num_queries)  # init self.refpoint_embed

        self.enc_out_class_embed = None
        self.enc_out_bbox_embed = None

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MSDeformAttn):
                m._reset_parameters()
        if self.num_feature_levels > 1 and self.level_embed is not None:
            nn.init.normal_(self.level_embed)

    def get_valid_ratio(self, mask):
        _, H, W = mask.shape
        valid_H = torch.sum(~mask[:, :, 0], 1)
        valid_W = torch.sum(~mask[:, 0, :], 1)
        valid_ratio_h = valid_H.float() / H
        valid_ratio_w = valid_W.float() / W
        valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def init_ref_points(self, use_num_queries):
        self.refpoint_embed = nn.Embedding(use_num_queries, 4)

    def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, text_dict=None):
        """
        Input:
            - srcs: List of multi features [bs, ci, hi, wi]
            - masks: List of multi masks [bs, hi, wi]
            - refpoint_embed: [bs, num_dn, 4]. None in infer
            - pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
            - tgt: [bs, num_dn, d_model]. None in infer

        """
        # prepare input for encoder
        src_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
            bs, c, h, w = src.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)

            src = src.flatten(2).transpose(1, 2)  # bs, hw, c
            mask = mask.flatten(1)  # bs, hw
            pos_embed = pos_embed.flatten(2).transpose(1, 2)  # bs, hw, c
            if self.num_feature_levels > 1 and self.level_embed is not None:
                lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
            else:
                lvl_pos_embed = pos_embed
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            src_flatten.append(src)
            mask_flatten.append(mask)
        src_flatten = torch.cat(src_flatten, 1)  # bs, \sum{hxw}, c
        mask_flatten = torch.cat(mask_flatten, 1)  # bs, \sum{hxw}
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)  # bs, \sum{hxw}, c
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=src_flatten.device
        )
        level_start_index = torch.cat(
            (spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])
        )
        valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)

        # two stage
        enc_topk_proposals = enc_refpoint_embed = None

        #########################################################
        # Begin Encoder
        #########################################################
        memory, memory_text = self.encoder(
            src_flatten,
            pos=lvl_pos_embed_flatten,
            level_start_index=level_start_index,
            spatial_shapes=spatial_shapes,
            valid_ratios=valid_ratios,
            key_padding_mask=mask_flatten,
            memory_text=text_dict["encoded_text"],
            text_attention_mask=~text_dict["text_token_mask"],
            # we ~ the mask . False means use the token; True means pad the token
            position_ids=text_dict["position_ids"],
            text_self_attention_masks=text_dict["text_self_attention_masks"],
        )
        #########################################################
        # End Encoder
        # - memory: bs, \sum{hw}, c
        # - mask_flatten: bs, \sum{hw}
        # - lvl_pos_embed_flatten: bs, \sum{hw}, c
        # - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
        # - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
        #########################################################
        text_dict["encoded_text"] = memory_text
        # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
        #     if memory.isnan().any() | memory.isinf().any():
        #         import ipdb; ipdb.set_trace()

        if self.two_stage_type == "standard":
            output_memory, output_proposals = gen_encoder_output_proposals(
                memory, mask_flatten, spatial_shapes
            )
            output_memory = self.enc_output_norm(self.enc_output(output_memory))

            if text_dict is not None:
                enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict)
            else:
                enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)

            topk_logits = enc_outputs_class_unselected.max(-1)[0]
            enc_outputs_coord_unselected = (
                self.enc_out_bbox_embed(output_memory) + output_proposals
            )  # (bs, \sum{hw}, 4) unsigmoid
            topk = self.num_queries

            topk_proposals = torch.topk(topk_logits, topk, dim=1)[1]  # bs, nq

            # gather boxes
            refpoint_embed_undetach = torch.gather(
                enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
            )  # unsigmoid
            refpoint_embed_ = refpoint_embed_undetach.detach()
            init_box_proposal = torch.gather(
                output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
            ).sigmoid()  # sigmoid

            # gather tgt
            tgt_undetach = torch.gather(
                output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)
            )
            if self.embed_init_tgt:
                tgt_ = (
                    self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
                )  # nq, bs, d_model
            else:
                tgt_ = tgt_undetach.detach()

            if refpoint_embed is not None:
                refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
                tgt = torch.cat([tgt, tgt_], dim=1)
            else:
                refpoint_embed, tgt = refpoint_embed_, tgt_

        elif self.two_stage_type == "no":
            tgt_ = (
                self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
            )  # nq, bs, d_model
            refpoint_embed_ = (
                self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
            )  # nq, bs, 4

            if refpoint_embed is not None:
                refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
                tgt = torch.cat([tgt, tgt_], dim=1)
            else:
                refpoint_embed, tgt = refpoint_embed_, tgt_

            if self.num_patterns > 0:
                tgt_embed = tgt.repeat(1, self.num_patterns, 1)
                refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
                tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(
                    self.num_queries, 1
                )  # 1, n_q*n_pat, d_model
                tgt = tgt_embed + tgt_pat

            init_box_proposal = refpoint_embed_.sigmoid()

        else:
            raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))
        #########################################################
        # End preparing tgt
        # - tgt: bs, NQ, d_model
        # - refpoint_embed(unsigmoid): bs, NQ, d_model
        #########################################################

        #########################################################
        # Begin Decoder
        #########################################################
        hs, references = self.decoder(
            tgt=tgt.transpose(0, 1),
            memory=memory.transpose(0, 1),
            memory_key_padding_mask=mask_flatten,
            pos=lvl_pos_embed_flatten.transpose(0, 1),
            refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
            level_start_index=level_start_index,
            spatial_shapes=spatial_shapes,
            valid_ratios=valid_ratios,
            tgt_mask=attn_mask,
            memory_text=text_dict["encoded_text"],
            text_attention_mask=~text_dict["text_token_mask"],
            # we ~ the mask . False means use the token; True means pad the token
        )
        #########################################################
        # End Decoder
        # hs: n_dec, bs, nq, d_model
        # references: n_dec+1, bs, nq, query_dim
        #########################################################

        #########################################################
        # Begin postprocess
        #########################################################
        if self.two_stage_type == "standard":
            hs_enc = tgt_undetach.unsqueeze(0)
            ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
        else:
            hs_enc = ref_enc = None
        #########################################################
        # End postprocess
        # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
        # ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
        #########################################################

        return hs, references, hs_enc, ref_enc, init_box_proposal
        # hs: (n_dec, bs, nq, d_model)
        # references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
        # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
        # ref_enc: sigmoid coordinates. \
        #           (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None


class TransformerEncoder(nn.Module):
    def __init__(
        self,
        encoder_layer,
        num_layers,
        d_model=256,
        num_queries=300,
        enc_layer_share=False,
        text_enhance_layer=None,
        feature_fusion_layer=None,
        use_checkpoint=False,
        use_transformer_ckpt=False,
    ):
        """_summary_

        Args:
            encoder_layer (_type_): _description_
            num_layers (_type_): _description_
            norm (_type_, optional): _description_. Defaults to None.
            d_model (int, optional): _description_. Defaults to 256.
            num_queries (int, optional): _description_. Defaults to 300.
            enc_layer_share (bool, optional): _description_. Defaults to False.

        """
        super().__init__()
        # prepare layers
        self.layers = []
        self.text_layers = []
        self.fusion_layers = []
        if num_layers > 0:
            self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)

            if text_enhance_layer is not None:
                self.text_layers = _get_clones(
                    text_enhance_layer, num_layers, layer_share=enc_layer_share
                )
            if feature_fusion_layer is not None:
                self.fusion_layers = _get_clones(
                    feature_fusion_layer, num_layers, layer_share=enc_layer_share
                )
        else:
            self.layers = []
            del encoder_layer

            if text_enhance_layer is not None:
                self.text_layers = []
                del text_enhance_layer
            if feature_fusion_layer is not None:
                self.fusion_layers = []
                del feature_fusion_layer

        self.query_scale = None
        self.num_queries = num_queries
        self.num_layers = num_layers
        self.d_model = d_model

        self.use_checkpoint = use_checkpoint
        self.use_transformer_ckpt = use_transformer_ckpt

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
        reference_points_list = []
        for lvl, (H_, W_) in enumerate(spatial_shapes):

            ref_y, ref_x = torch.meshgrid(
                torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
                torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
            )
            ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
            ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]
        return reference_points

    def forward(
        self,
        # for images
        src: Tensor,
        pos: Tensor,
        spatial_shapes: Tensor,
        level_start_index: Tensor,
        valid_ratios: Tensor,
        key_padding_mask: Tensor,
        # for texts
        memory_text: Tensor = None,
        text_attention_mask: Tensor = None,
        pos_text: Tensor = None,
        text_self_attention_masks: Tensor = None,
        position_ids: Tensor = None,
    ):
        """
        Input:
            - src: [bs, sum(hi*wi), 256]
            - pos: pos embed for src. [bs, sum(hi*wi), 256]
            - spatial_shapes: h,w of each level [num_level, 2]
            - level_start_index: [num_level] start point of level in sum(hi*wi).
            - valid_ratios: [bs, num_level, 2]
            - key_padding_mask: [bs, sum(hi*wi)]

            - memory_text: bs, n_text, 256
            - text_attention_mask: bs, n_text
                False for no padding; True for padding
            - pos_text: bs, n_text, 256

            - position_ids: bs, n_text
        Intermedia:
            - reference_points: [bs, sum(hi*wi), num_level, 2]
        Outpus:
            - output: [bs, sum(hi*wi), 256]
        """

        output = src

        # preparation and reshape
        if self.num_layers > 0:
            reference_points = self.get_reference_points(
                spatial_shapes, valid_ratios, device=src.device
            )

        if self.text_layers:
            # generate pos_text
            bs, n_text, text_dim = memory_text.shape
            if pos_text is None and position_ids is None:
                pos_text = (
                    torch.arange(n_text, device=memory_text.device)
                    .float()
                    .unsqueeze(0)
                    .unsqueeze(-1)
                    .repeat(bs, 1, 1)
                )
                pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False)
            if position_ids is not None:
                pos_text = get_sine_pos_embed(
                    position_ids[..., None], num_pos_feats=256, exchange_xy=False
                )

        # main process
        for layer_id, layer in enumerate(self.layers):
            # if output.isnan().any() or memory_text.isnan().any():
            #     if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
            #         import ipdb; ipdb.set_trace()
            if self.fusion_layers:
                if self.use_checkpoint:
                    output, memory_text = checkpoint.checkpoint(
                        self.fusion_layers[layer_id],
                        output,
                        memory_text,
                        key_padding_mask,
                        text_attention_mask,
                    )
                else:
                    output, memory_text = self.fusion_layers[layer_id](
                        v=output,
                        l=memory_text,
                        attention_mask_v=key_padding_mask,
                        attention_mask_l=text_attention_mask,
                    )

            if self.text_layers:
                memory_text = self.text_layers[layer_id](
                    src=memory_text.transpose(0, 1),
                    src_mask=~text_self_attention_masks,  # note we use ~ for mask here
                    src_key_padding_mask=text_attention_mask,
                    pos=(pos_text.transpose(0, 1) if pos_text is not None else None),
                ).transpose(0, 1)

            # main process
            if self.use_transformer_ckpt:
                output = checkpoint.checkpoint(
                    layer,
                    output,
                    pos,
                    reference_points,
                    spatial_shapes,
                    level_start_index,
                    key_padding_mask,
                )
            else:
                output = layer(
                    src=output,
                    pos=pos,
                    reference_points=reference_points,
                    spatial_shapes=spatial_shapes,
                    level_start_index=level_start_index,
                    key_padding_mask=key_padding_mask,
                )

        return output, memory_text


class TransformerDecoder(nn.Module):
    def __init__(
        self,
        decoder_layer,
        num_layers,
        norm=None,
        return_intermediate=False,
        d_model=256,
        query_dim=4,
        num_feature_levels=1,
    ):
        super().__init__()
        if num_layers > 0:
            self.layers = _get_clones(decoder_layer, num_layers)
        else:
            self.layers = []
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate
        assert return_intermediate, "support return_intermediate only"
        self.query_dim = query_dim
        assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
        self.num_feature_levels = num_feature_levels

        self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
        self.query_pos_sine_scale = None

        self.query_scale = None
        self.bbox_embed = None
        self.class_embed = None

        self.d_model = d_model

        self.ref_anchor_head = None

    def forward(
        self,
        tgt,
        memory,
        tgt_mask: Optional[Tensor] = None,
        memory_mask: Optional[Tensor] = None,
        tgt_key_padding_mask: Optional[Tensor] = None,
        memory_key_padding_mask: Optional[Tensor] = None,
        pos: Optional[Tensor] = None,
        refpoints_unsigmoid: Optional[Tensor] = None,  # num_queries, bs, 2
        # for memory
        level_start_index: Optional[Tensor] = None,  # num_levels
        spatial_shapes: Optional[Tensor] = None,  # bs, num_levels, 2
        valid_ratios: Optional[Tensor] = None,
        # for text
        memory_text: Optional[Tensor] = None,
        text_attention_mask: Optional[Tensor] = None,
    ):
        """
        Input:
            - tgt: nq, bs, d_model
            - memory: hw, bs, d_model
            - pos: hw, bs, d_model
            - refpoints_unsigmoid: nq, bs, 2/4
            - valid_ratios/spatial_shapes: bs, nlevel, 2
        """
        output = tgt

        intermediate = []
        reference_points = refpoints_unsigmoid.sigmoid()
        ref_points = [reference_points]

        for layer_id, layer in enumerate(self.layers):

            if reference_points.shape[-1] == 4:
                reference_points_input = (
                    reference_points[:, :, None]
                    * torch.cat([valid_ratios, valid_ratios], -1)[None, :]
                )  # nq, bs, nlevel, 4
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = reference_points[:, :, None] * valid_ratios[None, :]
            query_sine_embed = gen_sineembed_for_position(
                reference_points_input[:, :, 0, :]
            )  # nq, bs, 256*2

            # conditional query
            raw_query_pos = self.ref_point_head(query_sine_embed)  # nq, bs, 256
            pos_scale = self.query_scale(output) if self.query_scale is not None else 1
            query_pos = pos_scale * raw_query_pos
            # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
            #     if query_pos.isnan().any() | query_pos.isinf().any():
            #         import ipdb; ipdb.set_trace()

            # main process
            output = layer(
                tgt=output,
                tgt_query_pos=query_pos,
                tgt_query_sine_embed=query_sine_embed,
                tgt_key_padding_mask=tgt_key_padding_mask,
                tgt_reference_points=reference_points_input,
                memory_text=memory_text,
                text_attention_mask=text_attention_mask,
                memory=memory,
                memory_key_padding_mask=memory_key_padding_mask,
                memory_level_start_index=level_start_index,
                memory_spatial_shapes=spatial_shapes,
                memory_pos=pos,
                self_attn_mask=tgt_mask,
                cross_attn_mask=memory_mask,
            )
            if output.isnan().any() | output.isinf().any():
                print(f"output layer_id {layer_id} is nan")
                try:
                    num_nan = output.isnan().sum().item()
                    num_inf = output.isinf().sum().item()
                    print(f"num_nan {num_nan}, num_inf {num_inf}")
                except Exception as e:
                    print(e)
                    # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
                    #     import ipdb; ipdb.set_trace()

            # iter update
            if self.bbox_embed is not None:
                # box_holder = self.bbox_embed(output)
                # box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
                # new_reference_points = box_holder[..., :self.query_dim].sigmoid()

                reference_before_sigmoid = inverse_sigmoid(reference_points)
                delta_unsig = self.bbox_embed[layer_id](output)
                outputs_unsig = delta_unsig + reference_before_sigmoid
                new_reference_points = outputs_unsig.sigmoid()

                reference_points = new_reference_points.detach()
                # if layer_id != self.num_layers - 1:
                ref_points.append(new_reference_points)

            intermediate.append(self.norm(output))

        return [
            [itm_out.transpose(0, 1) for itm_out in intermediate],
            [itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points],
        ]


class DeformableTransformerEncoderLayer(nn.Module):
    def __init__(
        self,
        d_model=256,
        d_ffn=1024,
        dropout=0.1,
        activation="relu",
        n_levels=4,
        n_heads=8,
        n_points=4,
    ):
        super().__init__()

        # self attention
        self.self_attn = MSDeformAttn(
            embed_dim=d_model,
            num_levels=n_levels,
            num_heads=n_heads,
            num_points=n_points,
            batch_first=True,
        )
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation, d_model=d_ffn)
        self.dropout2 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout3 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, src):
        src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
        src = src + self.dropout3(src2)
        src = self.norm2(src)
        return src

    def forward(
        self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None
    ):
        # self attention
        # import ipdb; ipdb.set_trace()
        src2 = self.self_attn(
            query=self.with_pos_embed(src, pos),
            reference_points=reference_points,
            value=src,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            key_padding_mask=key_padding_mask,
        )
        src = src + self.dropout1(src2)
        src = self.norm1(src)

        # ffn
        src = self.forward_ffn(src)

        return src


class DeformableTransformerDecoderLayer(nn.Module):
    def __init__(
        self,
        d_model=256,
        d_ffn=1024,
        dropout=0.1,
        activation="relu",
        n_levels=4,
        n_heads=8,
        n_points=4,
        use_text_feat_guide=False,
        use_text_cross_attention=False,
    ):
        super().__init__()

        # cross attention
        self.cross_attn = MSDeformAttn(
            embed_dim=d_model,
            num_levels=n_levels,
            num_heads=n_heads,
            num_points=n_points,
            batch_first=True,
        )
        self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
        self.norm1 = nn.LayerNorm(d_model)

        # cross attention text
        if use_text_cross_attention:
            self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
            self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
            self.catext_norm = nn.LayerNorm(d_model)

        # self attention
        self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
        self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
        self.norm2 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
        self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
        self.norm3 = nn.LayerNorm(d_model)

        self.key_aware_proj = None
        self.use_text_feat_guide = use_text_feat_guide
        assert not use_text_feat_guide
        self.use_text_cross_attention = use_text_cross_attention

    def rm_self_attn_modules(self):
        self.self_attn = None
        self.dropout2 = None
        self.norm2 = None

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        with torch.cuda.amp.autocast(enabled=False):
            tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout4(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def forward(
        self,
        # for tgt
        tgt: Optional[Tensor],  # nq, bs, d_model
        tgt_query_pos: Optional[Tensor] = None,  # pos for query. MLP(Sine(pos))
        tgt_query_sine_embed: Optional[Tensor] = None,  # pos for query. Sine(pos)
        tgt_key_padding_mask: Optional[Tensor] = None,
        tgt_reference_points: Optional[Tensor] = None,  # nq, bs, 4
        memory_text: Optional[Tensor] = None,  # bs, num_token, d_model
        text_attention_mask: Optional[Tensor] = None,  # bs, num_token
        # for memory
        memory: Optional[Tensor] = None,  # hw, bs, d_model
        memory_key_padding_mask: Optional[Tensor] = None,
        memory_level_start_index: Optional[Tensor] = None,  # num_levels
        memory_spatial_shapes: Optional[Tensor] = None,  # bs, num_levels, 2
        memory_pos: Optional[Tensor] = None,  # pos for memory
        # sa
        self_attn_mask: Optional[Tensor] = None,  # mask used for self-attention
        cross_attn_mask: Optional[Tensor] = None,  # mask used for cross-attention
    ):
        """
        Input:
            - tgt/tgt_query_pos: nq, bs, d_model
            -
        """
        assert cross_attn_mask is None

        # self attention
        if self.self_attn is not None:
            # import ipdb; ipdb.set_trace()
            q = k = self.with_pos_embed(tgt, tgt_query_pos)
            tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
            tgt = tgt + self.dropout2(tgt2)
            tgt = self.norm2(tgt)

        if self.use_text_cross_attention:
            tgt2 = self.ca_text(
                self.with_pos_embed(tgt, tgt_query_pos),
                memory_text.transpose(0, 1),
                memory_text.transpose(0, 1),
                key_padding_mask=text_attention_mask,
            )[0]
            tgt = tgt + self.catext_dropout(tgt2)
            tgt = self.catext_norm(tgt)

        tgt2 = self.cross_attn(
            query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
            reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
            value=memory.transpose(0, 1),
            spatial_shapes=memory_spatial_shapes,
            level_start_index=memory_level_start_index,
            key_padding_mask=memory_key_padding_mask,
        ).transpose(0, 1)
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)

        # ffn
        tgt = self.forward_ffn(tgt)

        return tgt


def build_transformer(args):
    return Transformer(
        d_model=args.hidden_dim,
        dropout=args.dropout,
        nhead=args.nheads,
        num_queries=args.num_queries,
        dim_feedforward=args.dim_feedforward,
        num_encoder_layers=args.enc_layers,
        num_decoder_layers=args.dec_layers,
        normalize_before=args.pre_norm,
        return_intermediate_dec=True,
        query_dim=args.query_dim,
        activation=args.transformer_activation,
        num_patterns=args.num_patterns,
        num_feature_levels=args.num_feature_levels,
        enc_n_points=args.enc_n_points,
        dec_n_points=args.dec_n_points,
        learnable_tgt_init=True,
        # two stage
        two_stage_type=args.two_stage_type,  # ['no', 'standard', 'early']
        embed_init_tgt=args.embed_init_tgt,
        use_text_enhancer=args.use_text_enhancer,
        use_fusion_layer=args.use_fusion_layer,
        use_checkpoint=args.use_checkpoint,
        use_transformer_ckpt=args.use_transformer_ckpt,
        use_text_cross_attention=args.use_text_cross_attention,
        text_dropout=args.text_dropout,
        fusion_dropout=args.fusion_dropout,
        fusion_droppath=args.fusion_droppath,
    )