Spaces:
Runtime error
Runtime error
File size: 21,581 Bytes
3fc0306 4debe07 3fc0306 4debe07 3fc0306 e98c1f9 3fc0306 1c7b1a7 3fc0306 4debe07 e98c1f9 6930c1c 3fc0306 e98c1f9 6930c1c 4debe07 6930c1c 3fc0306 4debe07 3fc0306 4debe07 3fc0306 4debe07 3fc0306 4debe07 6930c1c 4debe07 3fc0306 4debe07 3fc0306 4debe07 3fc0306 4debe07 6930c1c 4debe07 3fc0306 4debe07 f80c1b9 4debe07 f80c1b9 4debe07 6930c1c e98c1f9 6930c1c 4debe07 6930c1c 4debe07 e98c1f9 6930c1c 3fc0306 6930c1c 4debe07 3fc0306 4debe07 f80c1b9 4debe07 6930c1c e98c1f9 6930c1c 4debe07 6930c1c 4debe07 6930c1c 4debe07 e98c1f9 3fc0306 6930c1c 3fc0306 6930c1c 3fc0306 6930c1c 3fc0306 6930c1c e98c1f9 6930c1c e98c1f9 6930c1c 3fc0306 4debe07 6930c1c 3fc0306 6930c1c 3fc0306 6930c1c 3fc0306 1c7b1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import argparse
import cv2
import os
from PIL import Image, ImageDraw, ImageFont, ImageOps
import numpy as np
from pathlib import Path
import gradio as gr
import matplotlib.pyplot as plt
from loguru import logger
import subprocess
import copy
import time
import warnings
import io
import random
import torch
from torchvision.ops import box_convert
warnings.filterwarnings("ignore")
# grounding DINO
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, load_image, predict
import groundingdino.datasets.transforms as T
# segment anything
from segment_anything import build_sam, SamPredictor
# lama-cleaner
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config as lama_Config
from lama_cleaner.helper import load_img, numpy_to_bytes, resize_max_size
#stable diffusion
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download
if not os.path.exists('./demo2.jpg'):
os.system("wget https://github.com/IDEA-Research/Grounded-Segment-Anything/raw/main/assets/demo2.jpg")
if not os.path.exists('./sam_vit_h_4b8939.pth'):
logger.info(f"get sam_vit_h_4b8939.pth...")
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
print(f'wget sam_vit_h_4b8939.pth result = {result}')
# Use this command for evaluate the GLIP-T model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filename = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth'
output_dir = "outputs"
groundingdino_device = 'cpu'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'device={device}')
# make dir
os.makedirs(output_dir, exist_ok=True)
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def load_image_and_transform(init_image):
init_image = init_image.convert("RGB")
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
font_size = 20
new_font = ImageFont.truetype(font, font_size)
draw.text((x0+2, y0+2), str(label), font=new_font, fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.8])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='red', facecolor=(0,0,0,0), lw=1))
ax.text(x0, y0+20, label, fontdict={'fontsize': 6}, color="white")
def get_grounding_box(image_tensor, grounding_caption, box_threshold, text_threshold):
# run grounding
boxes, logits, phrases = predict(groundingDino_model, image_tensor, grounding_caption, box_threshold, text_threshold, device=groundingdino_device)
labels = [
f"{phrase} ({logit:.2f})"
for phrase, logit
in zip(phrases, logits)
]
# annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
# image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
return boxes, labels
def mask_extend(img, box, extend_pixels=10, useRectangle=True):
box[0] = int(box[0])
box[1] = int(box[1])
box[2] = int(box[2])
box[3] = int(box[3])
region = img.crop(tuple(box)) # crop based on bb box
new_width = box[2] - box[0] + 2*extend_pixels
new_height = box[3] - box[1] + 2*extend_pixels
region_BILINEAR = region.resize((int(new_width), int(new_height))) # resize the cropped region based on "extend_pixels"
if useRectangle:
region_draw = ImageDraw.Draw(region_BILINEAR)
region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255)) # draw white rectangle
img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels))) #pastes the resized region back into the original image at the same location as the original bounding box but with an additional padding of extend_pixels pixels on all sides
return img
def mix_masks(imgs):
re_img = 1 - np.asarray(imgs[0].convert("1"))
for i in range(len(imgs)-1):
re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1")))
re_img = 1 - re_img
return Image.fromarray(np.uint8(255*re_img))
def lama_cleaner_process(image, mask):
ori_image = image
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
# rotate image
ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
image = ori_image
original_shape = ori_image.shape
interpolation = cv2.INTER_CUBIC
size_limit = 1080
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
config = lama_Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
# logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
# logger.info(f"Resized image shape_1_: {image.shape}")
# logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
# logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
res_np_img = lama_cleaner_model(image, mask, config)
torch.cuda.empty_cache()
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
return image
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend):
text_prompt = text_prompt.strip()
# user guidance messages
if not (task_type == 'inpainting' or task_type == 'remove'):
if text_prompt == '':
return [], gr.Gallery.update(label='Please input detection prompt~~')
if input_image is None:
return [], gr.Gallery.update(label='Please upload a image~~')
file_temp = int(time.time())
# load mask
input_mask_pil = input_image['mask']
input_mask = np.array(input_mask_pil.convert("L"))
# load image
image_pil, image_tensor = load_image_and_transform(input_image['image'])
output_images = []
output_images.append(input_image['image'])
# RUN GROUNDINGDINO: we skip DINO if we draw mask on the image
if (task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw:
pass
else:
boxes, phrases = get_grounding_box(image_tensor, text_prompt, box_threshold, text_threshold)
if boxes.size(0) == 0:
logger.info(f'run_grounded_sam_[]_{task_type}_[{text_prompt}]_1_[No objects detected, please try others.]_')
return [], gr.Gallery.update(label='No objects detected, please try others!')
boxes_filt_ori = copy.deepcopy(boxes)
size = image_pil.size
pred_dict = {
"boxes": boxes,
"size": [size[1], size[0]], # H,W
"labels": phrases,
}
# store and save DINO output
image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
image_path = os.path.join(output_dir, f"grounding_dino_output_{file_temp}.jpg")
image_with_box.save(image_path)
detection_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
os.remove(image_path)
output_images.append(detection_image_result)
# if mask is detected from DINO
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_')
if task_type == 'segment' or ((task_type == 'inpainting' or task_type == 'remove')
and mask_source_radio == mask_source_segment):
image = np.array(input_image['image'])
sam_predictor.set_image(image)
# map the bounding boxes from dino to original size
h, w = size[1], size[0]
boxes = boxes * torch.Tensor([w, h, w, h])
boxes = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy")
# can use box_convert function or below
# for i in range(boxes.size(0)):
# boxes[i] = boxes[i] * torch.Tensor([W, H, W, H])
# boxes[i][:2] -= boxes[i][2:] / 2 # top left corner
# boxes[i][2:] += boxes[i][:2] # bottom left corner
# transform boxes from original ratio to sam's zoomed ratio
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes, image.shape[:2])
# predict masks/segmentation
# masks: [number of masks, C, H, W] but note that H and W is 512
masks, _, _ = sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
# draw output image
plt.figure()
plt.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes, phrases):
show_box(box.numpy(), plt.gca(), label)
plt.axis('off')
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
plt.savefig(image_path, bbox_inches="tight")
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
os.remove(image_path)
output_images.append(segment_image_result)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
if task_type == 'segment':
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_Final_')
return output_images, gr.Gallery.update(label='result images')
elif task_type == 'inpainting' or task_type == 'remove':
# if no inpaint prompt is entered, we treat it as remove
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
task_type = 'remove'
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_4_')
if mask_source_radio == mask_source_draw:
mask_pil = input_mask_pil
mask = input_mask
else:
masks_ori = copy.deepcopy(masks)
# inpainting pipeline
if inpaint_mode == 'merge':
masks = torch.sum(masks, dim=0).unsqueeze(0)
masks = torch.where(masks > 0, True, False)
# simply choose the first mask, which will be refine in the future release
mask = masks[0][0].cpu().numpy()
mask_pil = Image.fromarray(mask)
output_images.append(mask_pil.convert("RGB"))
if task_type == 'inpainting':
# inpainting pipeline
image_source_for_inpaint = image_pil.resize((512, 512))
image_mask_for_inpaint = mask_pil.resize((512, 512))
image_inpainting = sd_pipe(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
else:
# remove from mask
if mask_source_radio == mask_source_segment:
mask_imgs = []
masks_shape = masks_ori.shape
boxes_filt_ori_array = boxes_filt_ori.numpy()
if inpaint_mode == 'merge':
extend_shape_0 = masks_shape[0]
extend_shape_1 = masks_shape[1]
else:
extend_shape_0 = 1
extend_shape_1 = 1
for i in range(extend_shape_0):
for j in range(extend_shape_1):
mask = masks_ori[i][j].cpu().numpy()
mask_pil = Image.fromarray(mask)
if remove_mode == 'segment':
useRectangle = False
else:
useRectangle = True
try:
remove_mask_extend = int(remove_mask_extend)
except:
remove_mask_extend = 10
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"),
box_convert(torch.tensor(boxes_filt_ori_array[i]), in_fmt="cxcywh", out_fmt="xyxy").numpy(),
extend_pixels=remove_mask_extend, useRectangle=useRectangle)
mask_imgs.append(mask_pil_exp)
mask_pil = mix_masks(mask_imgs)
output_images.append(mask_pil.convert("RGB"))
image_inpainting = lama_cleaner_process(np.array(image_pil), np.array(mask_pil.convert("L")))
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
output_images.append(image_inpainting)
return output_images, gr.Gallery.update(label='result images')
else:
logger.info(f"task_type:{task_type} error!")
logger.info(f'run_anything_task_[{file_temp}]_Final_Inpainting_')
return output_images, gr.Gallery.update(label='result images')
def change_radio_display(task_type, mask_source_radio):
text_prompt_visible = True
inpaint_prompt_visible = False
mask_source_radio_visible = False
if task_type == "inpainting":
inpaint_prompt_visible = True
if task_type == "inpainting" or task_type == "remove":
mask_source_radio_visible = True
if mask_source_radio == mask_source_draw:
text_prompt_visible = False
return gr.Textbox.update(visible=text_prompt_visible), gr.Textbox.update(visible=inpaint_prompt_visible), gr.Radio.update(visible=mask_source_radio_visible)
# model initialization
groundingDino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, groundingdino_device)
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
lama_cleaner_model = ModelManager(name='lama',device='cpu')
# initialize stable-diffusion-inpainting
logger.info(f"initialize stable-diffusion-inpainting...")
sd_pipe = None
if os.environ.get('IS_MY_DEBUG') is None:
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16
)
sd_pipe = sd_pipe.to(device)
if __name__ == "__main__":
mask_source_draw = "Draw mask on image."
mask_source_segment = "Segment based on prompt and inpaint."
parser = argparse.ArgumentParser("Grounding SAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
print(f'args = {args}')
block = gr.Blocks().queue()
with block:
gr.Markdown("# GroundingDino SAM and Stable Diffusion")
with gr.Row():
with gr.Column():
input_image = gr.Image(
source="upload", elem_id="image_upload", type="pil", tool="sketch", value="demo2.jpg", label="Upload")
task_type = gr.Radio(["segment", "inpainting", "remove"], value="segment",
label='Task type', visible=True)
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
value=mask_source_segment, label="Mask from",
visible=False)
text_prompt = gr.Textbox(label="Detection Prompt, seperating each name with dot '.', i.e.: bear.cat.dog.chair ]", \
value='dog', placeholder="Cannot be empty")
inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False)
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
iou_threshold = gr.Slider(
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
)
inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode")
with gr.Row():
with gr.Column(scale=1):
remove_mode = gr.Radio(["segment", "rectangle"], value="segment", label='remove mode')
with gr.Column(scale=1):
remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
with gr.Column():
gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", visible=True
).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio])
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio])
DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) and kudos to thier excellent works. Welcome everyone to try this out and learn together!'
gr.Markdown(DESCRIPTION)
run_button.click(fn=run_anything_task, inputs=[
input_image, text_prompt, task_type, inpaint_prompt,
box_threshold,text_threshold, iou_threshold, inpaint_mode,
mask_source_radio, remove_mode, remove_mask_extend],
outputs=[gallery, gallery], show_progress=True, queue=True)
block.launch(debug=args.debug, share=args.share, show_api=False, show_error=True) |