File size: 25,173 Bytes
d0181bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import base64
import io
import time
import datetime
import uvicorn
from threading import Lock
from io import BytesIO
from gradio.processing_utils import decode_base64_to_file
from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest

import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
from typing import List
import piexif
import piexif.helper

def upscaler_to_index(name: str):
    try:
        return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
    except:
        raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")

def script_name_to_index(name, scripts):
    try:
        return [script.title().lower() for script in scripts].index(name.lower())
    except:
        raise HTTPException(status_code=422, detail=f"Script '{name}' not found")

def validate_sampler_name(name):
    config = sd_samplers.all_samplers_map.get(name, None)
    if config is None:
        raise HTTPException(status_code=404, detail="Sampler not found")

    return name

def setUpscalers(req: dict):
    reqDict = vars(req)
    reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
    reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
    return reqDict

def decode_base64_to_image(encoding):
    if encoding.startswith("data:image/"):
        encoding = encoding.split(";")[1].split(",")[1]
    try:
        image = Image.open(BytesIO(base64.b64decode(encoding)))
        return image
    except Exception as err:
        raise HTTPException(status_code=500, detail="Invalid encoded image")

def encode_pil_to_base64(image):
    with io.BytesIO() as output_bytes:

        if opts.samples_format.lower() == 'png':
            use_metadata = False
            metadata = PngImagePlugin.PngInfo()
            for key, value in image.info.items():
                if isinstance(key, str) and isinstance(value, str):
                    metadata.add_text(key, value)
                    use_metadata = True
            image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)

        elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
            parameters = image.info.get('parameters', None)
            exif_bytes = piexif.dump({
                "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
            })
            if opts.samples_format.lower() in ("jpg", "jpeg"):
                image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
            else:
                image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)

        else:
            raise HTTPException(status_code=500, detail="Invalid image format")

        bytes_data = output_bytes.getvalue()

    return base64.b64encode(bytes_data)

def api_middleware(app: FastAPI):
    @app.middleware("http")
    async def log_and_time(req: Request, call_next):
        ts = time.time()
        res: Response = await call_next(req)
        duration = str(round(time.time() - ts, 4))
        res.headers["X-Process-Time"] = duration
        endpoint = req.scope.get('path', 'err')
        if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
            print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
                t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
                code = res.status_code,
                ver = req.scope.get('http_version', '0.0'),
                cli = req.scope.get('client', ('0:0.0.0', 0))[0],
                prot = req.scope.get('scheme', 'err'),
                method = req.scope.get('method', 'err'),
                endpoint = endpoint,
                duration = duration,
            ))
        return res


class Api:
    def __init__(self, app: FastAPI, queue_lock: Lock):
        if shared.cmd_opts.api_auth:
            self.credentials = dict()
            for auth in shared.cmd_opts.api_auth.split(","):
                user, password = auth.split(":")
                self.credentials[user] = password

        self.router = APIRouter()
        self.app = app
        self.queue_lock = queue_lock
        api_middleware(self.app)
        self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
        self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
        self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
        self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
        self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
        self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
        self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
        self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
        self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
        self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
        self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
        self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
        self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
        self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
        self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
        self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
        self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
        self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
        self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
        self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
        self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
        self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
        self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
        self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
        self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
        self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
        self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)

    def add_api_route(self, path: str, endpoint, **kwargs):
        if shared.cmd_opts.api_auth:
            return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
        return self.app.add_api_route(path, endpoint, **kwargs)

    def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
        if credentials.username in self.credentials:
            if compare_digest(credentials.password, self.credentials[credentials.username]):
                return True

        raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})

    def get_script(self, script_name, script_runner):
        if script_name is None:
            return None, None

        if not script_runner.scripts:
            script_runner.initialize_scripts(False)
            ui.create_ui()

        script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
        script = script_runner.selectable_scripts[script_idx]
        return script, script_idx

    def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
        script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img)

        populate = txt2imgreq.copy(update={ # Override __init__ params
            "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
            "do_not_save_samples": True,
            "do_not_save_grid": True
            }
        )
        if populate.sampler_name:
            populate.sampler_index = None  # prevent a warning later on

        args = vars(populate)
        args.pop('script_name', None)

        with self.queue_lock:
            p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)

            shared.state.begin()
            if script is not None:
                p.outpath_grids = opts.outdir_txt2img_grids
                p.outpath_samples = opts.outdir_txt2img_samples
                p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
                processed = scripts.scripts_txt2img.run(p, *p.script_args)
            else:
                processed = process_images(p)
            shared.state.end()

        b64images = list(map(encode_pil_to_base64, processed.images))

        return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())

    def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
        init_images = img2imgreq.init_images
        if init_images is None:
            raise HTTPException(status_code=404, detail="Init image not found")

        script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img)

        mask = img2imgreq.mask
        if mask:
            mask = decode_base64_to_image(mask)

        populate = img2imgreq.copy(update={ # Override __init__ params
            "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
            "do_not_save_samples": True,
            "do_not_save_grid": True,
            "mask": mask
            }
        )
        if populate.sampler_name:
            populate.sampler_index = None  # prevent a warning later on

        args = vars(populate)
        args.pop('include_init_images', None)  # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
        args.pop('script_name', None)

        with self.queue_lock:
            p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
            p.init_images = [decode_base64_to_image(x) for x in init_images]

            shared.state.begin()
            if script is not None:
                p.outpath_grids = opts.outdir_img2img_grids
                p.outpath_samples = opts.outdir_img2img_samples
                p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args
                processed = scripts.scripts_img2img.run(p, *p.script_args)
            else:
                processed = process_images(p)
            shared.state.end()

        b64images = list(map(encode_pil_to_base64, processed.images))

        if not img2imgreq.include_init_images:
            img2imgreq.init_images = None
            img2imgreq.mask = None

        return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())

    def extras_single_image_api(self, req: ExtrasSingleImageRequest):
        reqDict = setUpscalers(req)

        reqDict['image'] = decode_base64_to_image(reqDict['image'])

        with self.queue_lock:
            result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)

        return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])

    def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
        reqDict = setUpscalers(req)

        def prepareFiles(file):
            file = decode_base64_to_file(file.data, file_path=file.name)
            file.orig_name = file.name
            return file

        reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
        reqDict.pop('imageList')

        with self.queue_lock:
            result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)

        return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])

    def pnginfoapi(self, req: PNGInfoRequest):
        if(not req.image.strip()):
            return PNGInfoResponse(info="")

        image = decode_base64_to_image(req.image.strip())
        if image is None:
            return PNGInfoResponse(info="")

        geninfo, items = images.read_info_from_image(image)
        if geninfo is None:
            geninfo = ""

        items = {**{'parameters': geninfo}, **items}

        return PNGInfoResponse(info=geninfo, items=items)

    def progressapi(self, req: ProgressRequest = Depends()):
        # copy from check_progress_call of ui.py

        if shared.state.job_count == 0:
            return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)

        # avoid dividing zero
        progress = 0.01

        if shared.state.job_count > 0:
            progress += shared.state.job_no / shared.state.job_count
        if shared.state.sampling_steps > 0:
            progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps

        time_since_start = time.time() - shared.state.time_start
        eta = (time_since_start/progress)
        eta_relative = eta-time_since_start

        progress = min(progress, 1)

        shared.state.set_current_image()

        current_image = None
        if shared.state.current_image and not req.skip_current_image:
            current_image = encode_pil_to_base64(shared.state.current_image)

        return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)

    def interrogateapi(self, interrogatereq: InterrogateRequest):
        image_b64 = interrogatereq.image
        if image_b64 is None:
            raise HTTPException(status_code=404, detail="Image not found")

        img = decode_base64_to_image(image_b64)
        img = img.convert('RGB')

        # Override object param
        with self.queue_lock:
            if interrogatereq.model == "clip":
                processed = shared.interrogator.interrogate(img)
            elif interrogatereq.model == "deepdanbooru":
                processed = deepbooru.model.tag(img)
            else:
                raise HTTPException(status_code=404, detail="Model not found")

        return InterrogateResponse(caption=processed)

    def interruptapi(self):
        shared.state.interrupt()

        return {}

    def skip(self):
        shared.state.skip()

    def get_config(self):
        options = {}
        for key in shared.opts.data.keys():
            metadata = shared.opts.data_labels.get(key)
            if(metadata is not None):
                options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
            else:
                options.update({key: shared.opts.data.get(key, None)})

        return options

    def set_config(self, req: Dict[str, Any]):
        for k, v in req.items():
            shared.opts.set(k, v)

        shared.opts.save(shared.config_filename)
        return

    def get_cmd_flags(self):
        return vars(shared.cmd_opts)

    def get_samplers(self):
        return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]

    def get_upscalers(self):
        return [
            {
                "name": upscaler.name,
                "model_name": upscaler.scaler.model_name,
                "model_path": upscaler.data_path,
                "model_url": None,
                "scale": upscaler.scale,
            }
            for upscaler in shared.sd_upscalers
        ]

    def get_sd_models(self):
        return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]

    def get_hypernetworks(self):
        return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]

    def get_face_restorers(self):
        return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]

    def get_realesrgan_models(self):
        return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]

    def get_prompt_styles(self):
        styleList = []
        for k in shared.prompt_styles.styles:
            style = shared.prompt_styles.styles[k]
            styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})

        return styleList

    def get_embeddings(self):
        db = sd_hijack.model_hijack.embedding_db

        def convert_embedding(embedding):
            return {
                "step": embedding.step,
                "sd_checkpoint": embedding.sd_checkpoint,
                "sd_checkpoint_name": embedding.sd_checkpoint_name,
                "shape": embedding.shape,
                "vectors": embedding.vectors,
            }

        def convert_embeddings(embeddings):
            return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}

        return {
            "loaded": convert_embeddings(db.word_embeddings),
            "skipped": convert_embeddings(db.skipped_embeddings),
        }

    def refresh_checkpoints(self):
        shared.refresh_checkpoints()

    def create_embedding(self, args: dict):
        try:
            shared.state.begin()
            filename = create_embedding(**args) # create empty embedding
            sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
            shared.state.end()
            return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
        except AssertionError as e:
            shared.state.end()
            return TrainResponse(info = "create embedding error: {error}".format(error = e))

    def create_hypernetwork(self, args: dict):
        try:
            shared.state.begin()
            filename = create_hypernetwork(**args) # create empty embedding
            shared.state.end()
            return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
        except AssertionError as e:
            shared.state.end()
            return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))

    def preprocess(self, args: dict):
        try:
            shared.state.begin()
            preprocess(**args) # quick operation unless blip/booru interrogation is enabled
            shared.state.end()
            return PreprocessResponse(info = 'preprocess complete')
        except KeyError as e:
            shared.state.end()
            return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
        except AssertionError as e:
            shared.state.end()
            return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
        except FileNotFoundError as e:
            shared.state.end()
            return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))

    def train_embedding(self, args: dict):
        try:
            shared.state.begin()
            apply_optimizations = shared.opts.training_xattention_optimizations
            error = None
            filename = ''
            if not apply_optimizations:
                sd_hijack.undo_optimizations()
            try:
                embedding, filename = train_embedding(**args) # can take a long time to complete
            except Exception as e:
                error = e
            finally:
                if not apply_optimizations:
                    sd_hijack.apply_optimizations()
                shared.state.end()
            return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
        except AssertionError as msg:
            shared.state.end()
            return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))

    def train_hypernetwork(self, args: dict):
        try:
            shared.state.begin()
            shared.loaded_hypernetworks = []
            apply_optimizations = shared.opts.training_xattention_optimizations
            error = None
            filename = ''
            if not apply_optimizations:
                sd_hijack.undo_optimizations()
            try:
                hypernetwork, filename = train_hypernetwork(**args)
            except Exception as e:
                error = e
            finally:
                shared.sd_model.cond_stage_model.to(devices.device)
                shared.sd_model.first_stage_model.to(devices.device)
                if not apply_optimizations:
                    sd_hijack.apply_optimizations()
                shared.state.end()
            return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error))
        except AssertionError as msg:
            shared.state.end()
            return TrainResponse(info="train embedding error: {error}".format(error=error))

    def get_memory(self):
        try:
            import os, psutil
            process = psutil.Process(os.getpid())
            res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
            ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
            ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
        except Exception as err:
            ram = { 'error': f'{err}' }
        try:
            import torch
            if torch.cuda.is_available():
                s = torch.cuda.mem_get_info()
                system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
                s = dict(torch.cuda.memory_stats(shared.device))
                allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
                reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
                active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
                inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
                warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
                cuda = {
                    'system': system,
                    'active': active,
                    'allocated': allocated,
                    'reserved': reserved,
                    'inactive': inactive,
                    'events': warnings,
                }
            else:
                cuda = { 'error': 'unavailable' }
        except Exception as err:
            cuda = { 'error': f'{err}' }
        return MemoryResponse(ram = ram, cuda = cuda)

    def launch(self, server_name, port):
        self.app.include_router(self.router)
        uvicorn.run(self.app, host=server_name, port=port)