File size: 29,236 Bytes
d0181bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import os
import sys
import traceback
import inspect
from collections import namedtuple

import torch
import tqdm
import html
import datetime
import csv
import safetensors.torch

import numpy as np
from PIL import Image, PngImagePlugin
from torch.utils.tensorboard import SummaryWriter

from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler

from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay
from modules.textual_inversion.logging import save_settings_to_file


TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"])
textual_inversion_templates = {}


def list_textual_inversion_templates():
    textual_inversion_templates.clear()

    for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir):
        for fn in fns:
            path = os.path.join(root, fn)

            textual_inversion_templates[fn] = TextualInversionTemplate(fn, path)

    return textual_inversion_templates


class Embedding:
    def __init__(self, vec, name, step=None):
        self.vec = vec
        self.name = name
        self.step = step
        self.shape = None
        self.vectors = 0
        self.cached_checksum = None
        self.sd_checkpoint = None
        self.sd_checkpoint_name = None
        self.optimizer_state_dict = None
        self.filename = None

    def save(self, filename):
        embedding_data = {
            "string_to_token": {"*": 265},
            "string_to_param": {"*": self.vec},
            "name": self.name,
            "step": self.step,
            "sd_checkpoint": self.sd_checkpoint,
            "sd_checkpoint_name": self.sd_checkpoint_name,
        }

        torch.save(embedding_data, filename)

        if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
            optimizer_saved_dict = {
                'hash': self.checksum(),
                'optimizer_state_dict': self.optimizer_state_dict,
            }
            torch.save(optimizer_saved_dict, filename + '.optim')

    def checksum(self):
        if self.cached_checksum is not None:
            return self.cached_checksum

        def const_hash(a):
            r = 0
            for v in a:
                r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
            return r

        self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}'
        return self.cached_checksum


class DirWithTextualInversionEmbeddings:
    def __init__(self, path):
        self.path = path
        self.mtime = None

    def has_changed(self):
        if not os.path.isdir(self.path):
            return False

        mt = os.path.getmtime(self.path)
        if self.mtime is None or mt > self.mtime:
            return True

    def update(self):
        if not os.path.isdir(self.path):
            return

        self.mtime = os.path.getmtime(self.path)


class EmbeddingDatabase:
    def __init__(self):
        self.ids_lookup = {}
        self.word_embeddings = {}
        self.skipped_embeddings = {}
        self.expected_shape = -1
        self.embedding_dirs = {}
        self.previously_displayed_embeddings = ()

    def add_embedding_dir(self, path):
        self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)

    def clear_embedding_dirs(self):
        self.embedding_dirs.clear()

    def register_embedding(self, embedding, model):
        self.word_embeddings[embedding.name] = embedding

        ids = model.cond_stage_model.tokenize([embedding.name])[0]

        first_id = ids[0]
        if first_id not in self.ids_lookup:
            self.ids_lookup[first_id] = []

        self.ids_lookup[first_id] = sorted(self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True)

        return embedding

    def get_expected_shape(self):
        vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1)
        return vec.shape[1]

    def load_from_file(self, path, filename):
        name, ext = os.path.splitext(filename)
        ext = ext.upper()

        if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
            _, second_ext = os.path.splitext(name)
            if second_ext.upper() == '.PREVIEW':
                return

            embed_image = Image.open(path)
            if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
                data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
                name = data.get('name', name)
            else:
                data = extract_image_data_embed(embed_image)
                name = data.get('name', name)
        elif ext in ['.BIN', '.PT']:
            data = torch.load(path, map_location="cpu")
        elif ext in ['.SAFETENSORS']:
            data = safetensors.torch.load_file(path, device="cpu")
        else:
            return

        # textual inversion embeddings
        if 'string_to_param' in data:
            param_dict = data['string_to_param']
            if hasattr(param_dict, '_parameters'):
                param_dict = getattr(param_dict, '_parameters')  # fix for torch 1.12.1 loading saved file from torch 1.11
            assert len(param_dict) == 1, 'embedding file has multiple terms in it'
            emb = next(iter(param_dict.items()))[1]
        # diffuser concepts
        elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
            assert len(data.keys()) == 1, 'embedding file has multiple terms in it'

            emb = next(iter(data.values()))
            if len(emb.shape) == 1:
                emb = emb.unsqueeze(0)
        else:
            raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")

        vec = emb.detach().to(devices.device, dtype=torch.float32)
        embedding = Embedding(vec, name)
        embedding.step = data.get('step', None)
        embedding.sd_checkpoint = data.get('sd_checkpoint', None)
        embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
        embedding.vectors = vec.shape[0]
        embedding.shape = vec.shape[-1]
        embedding.filename = path

        if self.expected_shape == -1 or self.expected_shape == embedding.shape:
            self.register_embedding(embedding, shared.sd_model)
        else:
            self.skipped_embeddings[name] = embedding

    def load_from_dir(self, embdir):
        if not os.path.isdir(embdir.path):
            return

        for root, dirs, fns in os.walk(embdir.path, followlinks=True):
            for fn in fns:
                try:
                    fullfn = os.path.join(root, fn)

                    if os.stat(fullfn).st_size == 0:
                        continue

                    self.load_from_file(fullfn, fn)
                except Exception:
                    print(f"Error loading embedding {fn}:", file=sys.stderr)
                    print(traceback.format_exc(), file=sys.stderr)
                    continue

    def load_textual_inversion_embeddings(self, force_reload=False):
        if not force_reload:
            need_reload = False
            for path, embdir in self.embedding_dirs.items():
                if embdir.has_changed():
                    need_reload = True
                    break

            if not need_reload:
                return

        self.ids_lookup.clear()
        self.word_embeddings.clear()
        self.skipped_embeddings.clear()
        self.expected_shape = self.get_expected_shape()

        for path, embdir in self.embedding_dirs.items():
            self.load_from_dir(embdir)
            embdir.update()

        displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
        if self.previously_displayed_embeddings != displayed_embeddings:
            self.previously_displayed_embeddings = displayed_embeddings
            print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
            if len(self.skipped_embeddings) > 0:
                print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")

    def find_embedding_at_position(self, tokens, offset):
        token = tokens[offset]
        possible_matches = self.ids_lookup.get(token, None)

        if possible_matches is None:
            return None, None

        for ids, embedding in possible_matches:
            if tokens[offset:offset + len(ids)] == ids:
                return embedding, len(ids)

        return None, None


def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
    cond_model = shared.sd_model.cond_stage_model

    with devices.autocast():
        cond_model([""])  # will send cond model to GPU if lowvram/medvram is active

    #cond_model expects at least some text, so we provide '*' as backup.
    embedded = cond_model.encode_embedding_init_text(init_text or '*', num_vectors_per_token)
    vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device)

    #Only copy if we provided an init_text, otherwise keep vectors as zeros
    if init_text:
        for i in range(num_vectors_per_token):
            vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]

    # Remove illegal characters from name.
    name = "".join( x for x in name if (x.isalnum() or x in "._- "))
    fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
    if not overwrite_old:
        assert not os.path.exists(fn), f"file {fn} already exists"

    embedding = Embedding(vec, name)
    embedding.step = 0
    embedding.save(fn)

    return fn


def write_loss(log_directory, filename, step, epoch_len, values):
    if shared.opts.training_write_csv_every == 0:
        return

    if step % shared.opts.training_write_csv_every != 0:
        return
    write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True

    with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
        csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])

        if write_csv_header:
            csv_writer.writeheader()

        epoch = (step - 1) // epoch_len
        epoch_step = (step - 1) % epoch_len

        csv_writer.writerow({
            "step": step,
            "epoch": epoch,
            "epoch_step": epoch_step,
            **values,
        })

def tensorboard_setup(log_directory):
    os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True)
    return SummaryWriter(
            log_dir=os.path.join(log_directory, "tensorboard"),
            flush_secs=shared.opts.training_tensorboard_flush_every)

def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num):
    tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step)
    tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step)
    tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step)
    tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step)

def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
    tensorboard_writer.add_scalar(tag=tag, 
        scalar_value=value, global_step=step)

def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
    # Convert a pil image to a torch tensor
    img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
    img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], 
        len(pil_image.getbands()))
    img_tensor = img_tensor.permute((2, 0, 1))
                
    tensorboard_writer.add_image(tag, img_tensor, global_step=step)

def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"):
    assert model_name, f"{name} not selected"
    assert learn_rate, "Learning rate is empty or 0"
    assert isinstance(batch_size, int), "Batch size must be integer"
    assert batch_size > 0, "Batch size must be positive"
    assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
    assert gradient_step > 0, "Gradient accumulation step must be positive"
    assert data_root, "Dataset directory is empty"
    assert os.path.isdir(data_root), "Dataset directory doesn't exist"
    assert os.listdir(data_root), "Dataset directory is empty"
    assert template_filename, "Prompt template file not selected"
    assert template_file, f"Prompt template file {template_filename} not found"
    assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist"
    assert steps, "Max steps is empty or 0"
    assert isinstance(steps, int), "Max steps must be integer"
    assert steps > 0, "Max steps must be positive"
    assert isinstance(save_model_every, int), "Save {name} must be integer"
    assert save_model_every >= 0, "Save {name} must be positive or 0"
    assert isinstance(create_image_every, int), "Create image must be integer"
    assert create_image_every >= 0, "Create image must be positive or 0"
    if save_model_every or create_image_every:
        assert log_directory, "Log directory is empty"


def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
    save_embedding_every = save_embedding_every or 0
    create_image_every = create_image_every or 0
    template_file = textual_inversion_templates.get(template_filename, None)
    validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
    template_file = template_file.path

    shared.state.job = "train-embedding"
    shared.state.textinfo = "Initializing textual inversion training..."
    shared.state.job_count = steps

    filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')

    log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name)
    unload = shared.opts.unload_models_when_training

    if save_embedding_every > 0:
        embedding_dir = os.path.join(log_directory, "embeddings")
        os.makedirs(embedding_dir, exist_ok=True)
    else:
        embedding_dir = None

    if create_image_every > 0:
        images_dir = os.path.join(log_directory, "images")
        os.makedirs(images_dir, exist_ok=True)
    else:
        images_dir = None

    if create_image_every > 0 and save_image_with_stored_embedding:
        images_embeds_dir = os.path.join(log_directory, "image_embeddings")
        os.makedirs(images_embeds_dir, exist_ok=True)
    else:
        images_embeds_dir = None

    hijack = sd_hijack.model_hijack

    embedding = hijack.embedding_db.word_embeddings[embedding_name]
    checkpoint = sd_models.select_checkpoint()

    initial_step = embedding.step or 0
    if initial_step >= steps:
        shared.state.textinfo = "Model has already been trained beyond specified max steps"
        return embedding, filename
    
    scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
    clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
        torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
        None
    if clip_grad:
        clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
    # dataset loading may take a while, so input validations and early returns should be done before this
    shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
    old_parallel_processing_allowed = shared.parallel_processing_allowed
    
    if shared.opts.training_enable_tensorboard:
        tensorboard_writer = tensorboard_setup(log_directory)

    pin_memory = shared.opts.pin_memory

    ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)

    if shared.opts.save_training_settings_to_txt:
        save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()})

    latent_sampling_method = ds.latent_sampling_method

    dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)

    if unload:
        shared.parallel_processing_allowed = False
        shared.sd_model.first_stage_model.to(devices.cpu)

    embedding.vec.requires_grad = True
    optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
    if shared.opts.save_optimizer_state:
        optimizer_state_dict = None
        if os.path.exists(filename + '.optim'):
            optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
            if embedding.checksum() == optimizer_saved_dict.get('hash', None):
                optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
    
        if optimizer_state_dict is not None:
            optimizer.load_state_dict(optimizer_state_dict)
            print("Loaded existing optimizer from checkpoint")
        else:
            print("No saved optimizer exists in checkpoint")

    scaler = torch.cuda.amp.GradScaler()

    batch_size = ds.batch_size
    gradient_step = ds.gradient_step
    # n steps = batch_size * gradient_step * n image processed
    steps_per_epoch = len(ds) // batch_size // gradient_step
    max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
    loss_step = 0
    _loss_step = 0 #internal

    last_saved_file = "<none>"
    last_saved_image = "<none>"
    forced_filename = "<none>"
    embedding_yet_to_be_embedded = False

    is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}
    img_c = None

    pbar = tqdm.tqdm(total=steps - initial_step)
    try:
        sd_hijack_checkpoint.add()

        for i in range((steps-initial_step) * gradient_step):
            if scheduler.finished:
                break
            if shared.state.interrupted:
                break
            for j, batch in enumerate(dl):
                # works as a drop_last=True for gradient accumulation
                if j == max_steps_per_epoch:
                    break
                scheduler.apply(optimizer, embedding.step)
                if scheduler.finished:
                    break
                if shared.state.interrupted:
                    break

                if clip_grad:
                    clip_grad_sched.step(embedding.step)
            
                with devices.autocast():
                    x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
                    if use_weight:
                        w = batch.weight.to(devices.device, non_blocking=pin_memory)
                    c = shared.sd_model.cond_stage_model(batch.cond_text)

                    if is_training_inpainting_model:
                        if img_c is None:
                            img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height)

                        cond = {"c_concat": [img_c], "c_crossattn": [c]}
                    else:
                        cond = c

                    if use_weight:
                        loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step
                        del w
                    else:
                        loss = shared.sd_model.forward(x, cond)[0] / gradient_step
                    del x

                    _loss_step += loss.item()
                scaler.scale(loss).backward()

                # go back until we reach gradient accumulation steps
                if (j + 1) % gradient_step != 0:
                    continue
                
                if clip_grad:
                    clip_grad(embedding.vec, clip_grad_sched.learn_rate)

                scaler.step(optimizer)
                scaler.update()
                embedding.step += 1
                pbar.update()
                optimizer.zero_grad(set_to_none=True)
                loss_step = _loss_step
                _loss_step = 0

                steps_done = embedding.step + 1

                epoch_num = embedding.step // steps_per_epoch
                epoch_step = embedding.step % steps_per_epoch

                description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}"
                pbar.set_description(description)
                if embedding_dir is not None and steps_done % save_embedding_every == 0:
                    # Before saving, change name to match current checkpoint.
                    embedding_name_every = f'{embedding_name}-{steps_done}'
                    last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
                    save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
                    embedding_yet_to_be_embedded = True

                write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
                    "loss": f"{loss_step:.7f}",
                    "learn_rate": scheduler.learn_rate
                })

                if images_dir is not None and steps_done % create_image_every == 0:
                    forced_filename = f'{embedding_name}-{steps_done}'
                    last_saved_image = os.path.join(images_dir, forced_filename)

                    shared.sd_model.first_stage_model.to(devices.device)

                    p = processing.StableDiffusionProcessingTxt2Img(
                        sd_model=shared.sd_model,
                        do_not_save_grid=True,
                        do_not_save_samples=True,
                        do_not_reload_embeddings=True,
                    )

                    if preview_from_txt2img:
                        p.prompt = preview_prompt
                        p.negative_prompt = preview_negative_prompt
                        p.steps = preview_steps
                        p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
                        p.cfg_scale = preview_cfg_scale
                        p.seed = preview_seed
                        p.width = preview_width
                        p.height = preview_height
                    else:
                        p.prompt = batch.cond_text[0]
                        p.steps = 20
                        p.width = training_width
                        p.height = training_height

                    preview_text = p.prompt

                    processed = processing.process_images(p)
                    image = processed.images[0] if len(processed.images) > 0 else None

                    if unload:
                        shared.sd_model.first_stage_model.to(devices.cpu)

                    if image is not None:
                        shared.state.assign_current_image(image)

                        last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
                        last_saved_image += f", prompt: {preview_text}"

                        if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
                            tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step)

                    if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:

                        last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')

                        info = PngImagePlugin.PngInfo()
                        data = torch.load(last_saved_file)
                        info.add_text("sd-ti-embedding", embedding_to_b64(data))

                        title = "<{}>".format(data.get('name', '???'))

                        try:
                            vectorSize = list(data['string_to_param'].values())[0].shape[0]
                        except Exception as e:
                            vectorSize = '?'

                        checkpoint = sd_models.select_checkpoint()
                        footer_left = checkpoint.model_name
                        footer_mid = '[{}]'.format(checkpoint.shorthash)
                        footer_right = '{}v {}s'.format(vectorSize, steps_done)

                        captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
                        captioned_image = insert_image_data_embed(captioned_image, data)

                        captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
                        embedding_yet_to_be_embedded = False

                    last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
                    last_saved_image += f", prompt: {preview_text}"

                shared.state.job_no = embedding.step

                shared.state.textinfo = f"""

<p>

Loss: {loss_step:.7f}<br/>

Step: {steps_done}<br/>

Last prompt: {html.escape(batch.cond_text[0])}<br/>

Last saved embedding: {html.escape(last_saved_file)}<br/>

Last saved image: {html.escape(last_saved_image)}<br/>

</p>

"""
        filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
        save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
    except Exception:
        print(traceback.format_exc(), file=sys.stderr)
        pass
    finally:
        pbar.leave = False
        pbar.close()
        shared.sd_model.first_stage_model.to(devices.device)
        shared.parallel_processing_allowed = old_parallel_processing_allowed
        sd_hijack_checkpoint.remove()

    return embedding, filename


def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
    old_embedding_name = embedding.name
    old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
    old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
    old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
    try:
        embedding.sd_checkpoint = checkpoint.shorthash
        embedding.sd_checkpoint_name = checkpoint.model_name
        if remove_cached_checksum:
            embedding.cached_checksum = None
        embedding.name = embedding_name
        embedding.optimizer_state_dict = optimizer.state_dict()
        embedding.save(filename)
    except:
        embedding.sd_checkpoint = old_sd_checkpoint
        embedding.sd_checkpoint_name = old_sd_checkpoint_name
        embedding.name = old_embedding_name
        embedding.cached_checksum = old_cached_checksum
        raise