Spaces:
Running
Running
File size: 33,806 Bytes
aa98b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
import streamlit as st
import asyncio
import nest_asyncio
import json
import os
import platform
if platform.system() == "Windows":
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
# Apply nest_asyncio: Allow nested calls within an already running event loop
nest_asyncio.apply()
# Create and reuse global event loop (create once and continue using)
if "event_loop" not in st.session_state:
loop = asyncio.new_event_loop()
st.session_state.event_loop = loop
asyncio.set_event_loop(loop)
from langgraph.prebuilt import create_react_agent
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from dotenv import load_dotenv
from langchain_mcp_adapters.client import MultiServerMCPClient
from utils import astream_graph, random_uuid
from langchain_core.messages.ai import AIMessageChunk
from langchain_core.messages.tool import ToolMessage
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.runnables import RunnableConfig
# Load environment variables (get API keys and settings from .env file)
load_dotenv(override=True)
# config.json file path setting
CONFIG_FILE_PATH = "config.json"
# Function to load settings from JSON file
def load_config_from_json():
"""
Loads settings from config.json file.
Creates a file with default settings if it doesn't exist.
Returns:
dict: Loaded settings
"""
default_config = {
"get_current_time": {
"command": "python",
"args": ["./mcp_server_time.py"],
"transport": "stdio"
}
}
try:
if os.path.exists(CONFIG_FILE_PATH):
with open(CONFIG_FILE_PATH, "r", encoding="utf-8") as f:
return json.load(f)
else:
# Create file with default settings if it doesn't exist
save_config_to_json(default_config)
return default_config
except Exception as e:
st.error(f"Error loading settings file: {str(e)}")
return default_config
# Function to save settings to JSON file
def save_config_to_json(config):
"""
Saves settings to config.json file.
Args:
config (dict): Settings to save
Returns:
bool: Save success status
"""
try:
with open(CONFIG_FILE_PATH, "w", encoding="utf-8") as f:
json.dump(config, f, indent=2, ensure_ascii=False)
return True
except Exception as e:
st.error(f"Error saving settings file: {str(e)}")
return False
# Initialize login session variables
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
# Check if login is required
use_login = os.environ.get("USE_LOGIN", "false").lower() == "true"
# Change page settings based on login status
if use_login and not st.session_state.authenticated:
# Login page uses default (narrow) layout
st.set_page_config(page_title="Agent with MCP Tools", page_icon="π§ ")
else:
# Main app uses wide layout
st.set_page_config(page_title="Agent with MCP Tools", page_icon="π§ ", layout="wide")
# Display login screen if login feature is enabled and not yet authenticated
if use_login and not st.session_state.authenticated:
st.title("π Login")
st.markdown("Login is required to use the system.")
# Place login form in the center of the screen with narrow width
with st.form("login_form"):
username = st.text_input("Username")
password = st.text_input("Password", type="password")
submit_button = st.form_submit_button("Login")
if submit_button:
expected_username = os.environ.get("USER_ID")
expected_password = os.environ.get("USER_PASSWORD")
if username == expected_username and password == expected_password:
st.session_state.authenticated = True
st.success("β
Login successful! Please wait...")
st.rerun()
else:
st.error("β Username or password is incorrect.")
# Don't display the main app on the login screen
st.stop()
# Add author information at the top of the sidebar (placed before other sidebar elements)
st.sidebar.markdown("### βοΈ Made by [TeddyNote](https://youtube.com/c/teddynote) π")
st.sidebar.markdown(
"### π» [Project Page](https://github.com/teddynote-lab/langgraph-mcp-agents)"
)
st.sidebar.divider() # Add divider
# Existing page title and description
st.title("π¬ MCP Tool Utilization Agent")
st.markdown("β¨ Ask questions to the ReAct agent that utilizes MCP tools.")
SYSTEM_PROMPT = """<ROLE>
You are a smart agent with an ability to use tools.
You will be given a question and you will use the tools to answer the question.
Pick the most relevant tool to answer the question.
If you are failed to answer the question, try different tools to get context.
Your answer should be very polite and professional.
</ROLE>
----
<INSTRUCTIONS>
Step 1: Analyze the question
- Analyze user's question and final goal.
- If the user's question is consist of multiple sub-questions, split them into smaller sub-questions.
Step 2: Pick the most relevant tool
- Pick the most relevant tool to answer the question.
- If you are failed to answer the question, try different tools to get context.
Step 3: Answer the question
- Answer the question in the same language as the question.
- Your answer should be very polite and professional.
Step 4: Provide the source of the answer(if applicable)
- If you've used the tool, provide the source of the answer.
- Valid sources are either a website(URL) or a document(PDF, etc).
Guidelines:
- If you've used the tool, your answer should be based on the tool's output(tool's output is more important than your own knowledge).
- If you've used the tool, and the source is valid URL, provide the source(URL) of the answer.
- Skip providing the source if the source is not URL.
- Answer in the same language as the question.
- Answer should be concise and to the point.
- Avoid response your output with any other information than the answer and the source.
</INSTRUCTIONS>
----
<OUTPUT_FORMAT>
(concise answer to the question)
**Source**(if applicable)
- (source1: valid URL)
- (source2: valid URL)
- ...
</OUTPUT_FORMAT>
"""
OUTPUT_TOKEN_INFO = {
"claude-3-5-sonnet-latest": {"max_tokens": 8192},
"claude-3-5-haiku-latest": {"max_tokens": 8192},
"claude-3-7-sonnet-latest": {"max_tokens": 64000},
"gpt-4o": {"max_tokens": 16000},
"gpt-4o-mini": {"max_tokens": 16000},
}
# Initialize session state
if "session_initialized" not in st.session_state:
st.session_state.session_initialized = False # Session initialization flag
st.session_state.agent = None # Storage for ReAct agent object
st.session_state.history = [] # List for storing conversation history
st.session_state.mcp_client = None # Storage for MCP client object
st.session_state.timeout_seconds = (
120 # Response generation time limit (seconds), default 120 seconds
)
st.session_state.selected_model = (
"claude-3-7-sonnet-latest" # Default model selection
)
st.session_state.recursion_limit = 100 # Recursion call limit, default 100
if "thread_id" not in st.session_state:
st.session_state.thread_id = random_uuid()
# --- Function Definitions ---
async def cleanup_mcp_client():
"""
Safely terminates the existing MCP client.
Properly releases resources if an existing client exists.
"""
if "mcp_client" in st.session_state and st.session_state.mcp_client is not None:
try:
await st.session_state.mcp_client.__aexit__(None, None, None)
st.session_state.mcp_client = None
except Exception as e:
import traceback
# st.warning(f"Error while terminating MCP client: {str(e)}")
# st.warning(traceback.format_exc())
def print_message():
"""
Displays chat history on the screen.
Distinguishes between user and assistant messages on the screen,
and displays tool call information within the assistant message container.
"""
i = 0
while i < len(st.session_state.history):
message = st.session_state.history[i]
if message["role"] == "user":
st.chat_message("user", avatar="π§βπ»").markdown(message["content"])
i += 1
elif message["role"] == "assistant":
# Create assistant message container
with st.chat_message("assistant", avatar="π€"):
# Display assistant message content
st.markdown(message["content"])
# Check if the next message is tool call information
if (
i + 1 < len(st.session_state.history)
and st.session_state.history[i + 1]["role"] == "assistant_tool"
):
# Display tool call information in the same container as an expander
with st.expander("π§ Tool Call Information", expanded=False):
st.markdown(st.session_state.history[i + 1]["content"])
i += 2 # Increment by 2 as we processed two messages together
else:
i += 1 # Increment by 1 as we only processed a regular message
else:
# Skip assistant_tool messages as they are handled above
i += 1
def get_streaming_callback(text_placeholder, tool_placeholder):
"""
Creates a streaming callback function.
This function creates a callback function to display responses generated from the LLM in real-time.
It displays text responses and tool call information in separate areas.
Args:
text_placeholder: Streamlit component to display text responses
tool_placeholder: Streamlit component to display tool call information
Returns:
callback_func: Streaming callback function
accumulated_text: List to store accumulated text responses
accumulated_tool: List to store accumulated tool call information
"""
accumulated_text = []
accumulated_tool = []
def callback_func(message: dict):
nonlocal accumulated_text, accumulated_tool
message_content = message.get("content", None)
if isinstance(message_content, AIMessageChunk):
content = message_content.content
# If content is in list form (mainly occurs in Claude models)
if isinstance(content, list) and len(content) > 0:
message_chunk = content[0]
# Process text type
if message_chunk["type"] == "text":
accumulated_text.append(message_chunk["text"])
text_placeholder.markdown("".join(accumulated_text))
# Process tool use type
elif message_chunk["type"] == "tool_use":
if "partial_json" in message_chunk:
accumulated_tool.append(message_chunk["partial_json"])
else:
tool_call_chunks = message_content.tool_call_chunks
tool_call_chunk = tool_call_chunks[0]
accumulated_tool.append(
"\n```json\n" + str(tool_call_chunk) + "\n```\n"
)
with tool_placeholder.expander(
"π§ Tool Call Information", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if tool_calls attribute exists (mainly occurs in OpenAI models)
elif (
hasattr(message_content, "tool_calls")
and message_content.tool_calls
and len(message_content.tool_calls[0]["name"]) > 0
):
tool_call_info = message_content.tool_calls[0]
accumulated_tool.append("\n```json\n" + str(tool_call_info) + "\n```\n")
with tool_placeholder.expander(
"π§ Tool Call Information", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if content is a simple string
elif isinstance(content, str):
accumulated_text.append(content)
text_placeholder.markdown("".join(accumulated_text))
# Process if invalid tool call information exists
elif (
hasattr(message_content, "invalid_tool_calls")
and message_content.invalid_tool_calls
):
tool_call_info = message_content.invalid_tool_calls[0]
accumulated_tool.append("\n```json\n" + str(tool_call_info) + "\n```\n")
with tool_placeholder.expander(
"π§ Tool Call Information (Invalid)", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if tool_call_chunks attribute exists
elif (
hasattr(message_content, "tool_call_chunks")
and message_content.tool_call_chunks
):
tool_call_chunk = message_content.tool_call_chunks[0]
accumulated_tool.append(
"\n```json\n" + str(tool_call_chunk) + "\n```\n"
)
with tool_placeholder.expander(
"π§ Tool Call Information", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if tool_calls exists in additional_kwargs (supports various model compatibility)
elif (
hasattr(message_content, "additional_kwargs")
and "tool_calls" in message_content.additional_kwargs
):
tool_call_info = message_content.additional_kwargs["tool_calls"][0]
accumulated_tool.append("\n```json\n" + str(tool_call_info) + "\n```\n")
with tool_placeholder.expander(
"π§ Tool Call Information", expanded=True
):
st.markdown("".join(accumulated_tool))
# Process if it's a tool message (tool response)
elif isinstance(message_content, ToolMessage):
accumulated_tool.append(
"\n```json\n" + str(message_content.content) + "\n```\n"
)
with tool_placeholder.expander("π§ Tool Call Information", expanded=True):
st.markdown("".join(accumulated_tool))
return None
return callback_func, accumulated_text, accumulated_tool
async def process_query(query, text_placeholder, tool_placeholder, timeout_seconds=60):
"""
Processes user questions and generates responses.
This function passes the user's question to the agent and streams the response in real-time.
Returns a timeout error if the response is not completed within the specified time.
Args:
query: Text of the question entered by the user
text_placeholder: Streamlit component to display text responses
tool_placeholder: Streamlit component to display tool call information
timeout_seconds: Response generation time limit (seconds)
Returns:
response: Agent's response object
final_text: Final text response
final_tool: Final tool call information
"""
try:
if st.session_state.agent:
streaming_callback, accumulated_text_obj, accumulated_tool_obj = (
get_streaming_callback(text_placeholder, tool_placeholder)
)
try:
response = await asyncio.wait_for(
astream_graph(
st.session_state.agent,
{"messages": [HumanMessage(content=query)]},
callback=streaming_callback,
config=RunnableConfig(
recursion_limit=st.session_state.recursion_limit,
thread_id=st.session_state.thread_id,
),
),
timeout=timeout_seconds,
)
except asyncio.TimeoutError:
error_msg = f"β±οΈ Request time exceeded {timeout_seconds} seconds. Please try again later."
return {"error": error_msg}, error_msg, ""
final_text = "".join(accumulated_text_obj)
final_tool = "".join(accumulated_tool_obj)
return response, final_text, final_tool
else:
return (
{"error": "π« Agent has not been initialized."},
"π« Agent has not been initialized.",
"",
)
except Exception as e:
import traceback
error_msg = f"β Error occurred during query processing: {str(e)}\n{traceback.format_exc()}"
return {"error": error_msg}, error_msg, ""
async def initialize_session(mcp_config=None):
"""
Initializes MCP session and agent.
Args:
mcp_config: MCP tool configuration information (JSON). Uses default settings if None
Returns:
bool: Initialization success status
"""
with st.spinner("π Connecting to MCP server..."):
# First safely clean up existing client
await cleanup_mcp_client()
if mcp_config is None:
# Load settings from config.json file
mcp_config = load_config_from_json()
client = MultiServerMCPClient(mcp_config)
await client.__aenter__()
tools = client.get_tools()
st.session_state.tool_count = len(tools)
st.session_state.mcp_client = client
# Initialize appropriate model based on selection
selected_model = st.session_state.selected_model
if selected_model in [
"claude-3-7-sonnet-latest",
"claude-3-5-sonnet-latest",
"claude-3-5-haiku-latest",
]:
model = ChatAnthropic(
model=selected_model,
temperature=0.1,
max_tokens=OUTPUT_TOKEN_INFO[selected_model]["max_tokens"],
)
else: # Use OpenAI model
model = ChatOpenAI(
model=selected_model,
temperature=0.1,
max_tokens=OUTPUT_TOKEN_INFO[selected_model]["max_tokens"],
)
agent = create_react_agent(
model,
tools,
checkpointer=MemorySaver(),
prompt=SYSTEM_PROMPT,
)
st.session_state.agent = agent
st.session_state.session_initialized = True
return True
# --- Sidebar: System Settings Section ---
with st.sidebar:
st.subheader("βοΈ System Settings")
# Model selection feature
# Create list of available models
available_models = []
# Check Anthropic API key
has_anthropic_key = os.environ.get("ANTHROPIC_API_KEY") is not None
if has_anthropic_key:
available_models.extend(
[
"claude-3-7-sonnet-latest",
"claude-3-5-sonnet-latest",
"claude-3-5-haiku-latest",
]
)
# Check OpenAI API key
has_openai_key = os.environ.get("OPENAI_API_KEY") is not None
if has_openai_key:
available_models.extend(["gpt-4o", "gpt-4o-mini"])
# Display message if no models are available
if not available_models:
st.warning(
"β οΈ API keys are not configured. Please add ANTHROPIC_API_KEY or OPENAI_API_KEY to your .env file."
)
# Add Claude model as default (to show UI even without keys)
available_models = ["claude-3-7-sonnet-latest"]
# Model selection dropdown
previous_model = st.session_state.selected_model
st.session_state.selected_model = st.selectbox(
"π€ Select model to use",
options=available_models,
index=(
available_models.index(st.session_state.selected_model)
if st.session_state.selected_model in available_models
else 0
),
help="Anthropic models require ANTHROPIC_API_KEY and OpenAI models require OPENAI_API_KEY to be set as environment variables.",
)
# Notify when model is changed and session needs to be reinitialized
if (
previous_model != st.session_state.selected_model
and st.session_state.session_initialized
):
st.warning(
"β οΈ Model has been changed. Click 'Apply Settings' button to apply changes."
)
# Add timeout setting slider
st.session_state.timeout_seconds = st.slider(
"β±οΈ Response generation time limit (seconds)",
min_value=60,
max_value=300,
value=st.session_state.timeout_seconds,
step=10,
help="Set the maximum time for the agent to generate a response. Complex tasks may require more time.",
)
st.session_state.recursion_limit = st.slider(
"β±οΈ Recursion call limit (count)",
min_value=10,
max_value=200,
value=st.session_state.recursion_limit,
step=10,
help="Set the recursion call limit. Setting too high a value may cause memory issues.",
)
st.divider() # Add divider
# Tool settings section
st.subheader("π§ Tool Settings")
# Manage expander state in session state
if "mcp_tools_expander" not in st.session_state:
st.session_state.mcp_tools_expander = False
# MCP tool addition interface
with st.expander("π§° Add MCP Tools", expanded=st.session_state.mcp_tools_expander):
# Load settings from config.json file
loaded_config = load_config_from_json()
default_config_text = json.dumps(loaded_config, indent=2, ensure_ascii=False)
# Create pending config based on existing mcp_config_text if not present
if "pending_mcp_config" not in st.session_state:
try:
st.session_state.pending_mcp_config = loaded_config
except Exception as e:
st.error(f"Failed to set initial pending config: {e}")
# UI for adding individual tools
st.subheader("Add Tool(JSON format)")
st.markdown(
"""
Please insert **ONE tool** in JSON format.
[How to Set Up?](https://teddylee777.notion.site/MCP-Tool-Setup-Guide-English-1d324f35d1298030a831dfb56045906a)
β οΈ **Important**: JSON must be wrapped in curly braces (`{}`).
"""
)
# Provide clearer example
example_json = {
"github": {
"command": "npx",
"args": [
"-y",
"@smithery/cli@latest",
"run",
"@smithery-ai/github",
"--config",
'{"githubPersonalAccessToken":"your_token_here"}',
],
"transport": "stdio",
}
}
default_text = json.dumps(example_json, indent=2, ensure_ascii=False)
new_tool_json = st.text_area(
"Tool JSON",
default_text,
height=250,
)
# Add button
if st.button(
"Add Tool",
type="primary",
key="add_tool_button",
use_container_width=True,
):
try:
# Validate input
if not new_tool_json.strip().startswith(
"{"
) or not new_tool_json.strip().endswith("}"):
st.error("JSON must start and end with curly braces ({}).")
st.markdown('Correct format: `{ "tool_name": { ... } }`')
else:
# Parse JSON
parsed_tool = json.loads(new_tool_json)
# Check if it's in mcpServers format and process accordingly
if "mcpServers" in parsed_tool:
# Move contents of mcpServers to top level
parsed_tool = parsed_tool["mcpServers"]
st.info(
"'mcpServers' format detected. Converting automatically."
)
# Check number of tools entered
if len(parsed_tool) == 0:
st.error("Please enter at least one tool.")
else:
# Process all tools
success_tools = []
for tool_name, tool_config in parsed_tool.items():
# Check URL field and set transport
if "url" in tool_config:
# Set transport to "sse" if URL exists
tool_config["transport"] = "sse"
st.info(
f"URL detected in '{tool_name}' tool, setting transport to 'sse'."
)
elif "transport" not in tool_config:
# Set default "stdio" if URL doesn't exist and transport isn't specified
tool_config["transport"] = "stdio"
# Check required fields
if (
"command" not in tool_config
and "url" not in tool_config
):
st.error(
f"'{tool_name}' tool configuration requires either 'command' or 'url' field."
)
elif "command" in tool_config and "args" not in tool_config:
st.error(
f"'{tool_name}' tool configuration requires 'args' field."
)
elif "command" in tool_config and not isinstance(
tool_config["args"], list
):
st.error(
f"'args' field in '{tool_name}' tool must be an array ([]) format."
)
else:
# Add tool to pending_mcp_config
st.session_state.pending_mcp_config[tool_name] = (
tool_config
)
success_tools.append(tool_name)
# Success message
if success_tools:
if len(success_tools) == 1:
st.success(
f"{success_tools[0]} tool has been added. Click 'Apply Settings' button to apply."
)
else:
tool_names = ", ".join(success_tools)
st.success(
f"Total {len(success_tools)} tools ({tool_names}) have been added. Click 'Apply Settings' button to apply."
)
# Collapse expander after adding
st.session_state.mcp_tools_expander = False
st.rerun()
except json.JSONDecodeError as e:
st.error(f"JSON parsing error: {e}")
st.markdown(
f"""
**How to fix**:
1. Check that your JSON format is correct.
2. All keys must be wrapped in double quotes (").
3. String values must also be wrapped in double quotes (").
4. When using double quotes within a string, they must be escaped (\\").
"""
)
except Exception as e:
st.error(f"Error occurred: {e}")
# Display registered tools list and add delete buttons
with st.expander("π Registered Tools List", expanded=True):
try:
pending_config = st.session_state.pending_mcp_config
except Exception as e:
st.error("Not a valid MCP tool configuration.")
else:
# Iterate through keys (tool names) in pending config
for tool_name in list(pending_config.keys()):
col1, col2 = st.columns([8, 2])
col1.markdown(f"- **{tool_name}**")
if col2.button("Delete", key=f"delete_{tool_name}"):
# Delete tool from pending config (not applied immediately)
del st.session_state.pending_mcp_config[tool_name]
st.success(
f"{tool_name} tool has been deleted. Click 'Apply Settings' button to apply."
)
st.divider() # Add divider
# --- Sidebar: System Information and Action Buttons Section ---
with st.sidebar:
st.subheader("π System Information")
st.write(
f"π οΈ MCP Tools Count: {st.session_state.get('tool_count', 'Initializing...')}"
)
selected_model_name = st.session_state.selected_model
st.write(f"π§ Current Model: {selected_model_name}")
# Move Apply Settings button here
if st.button(
"Apply Settings",
key="apply_button",
type="primary",
use_container_width=True,
):
# Display applying message
apply_status = st.empty()
with apply_status.container():
st.warning("π Applying changes. Please wait...")
progress_bar = st.progress(0)
# Save settings
st.session_state.mcp_config_text = json.dumps(
st.session_state.pending_mcp_config, indent=2, ensure_ascii=False
)
# Save settings to config.json file
save_result = save_config_to_json(st.session_state.pending_mcp_config)
if not save_result:
st.error("β Failed to save settings file.")
progress_bar.progress(15)
# Prepare session initialization
st.session_state.session_initialized = False
st.session_state.agent = None
# Update progress
progress_bar.progress(30)
# Run initialization
success = st.session_state.event_loop.run_until_complete(
initialize_session(st.session_state.pending_mcp_config)
)
# Update progress
progress_bar.progress(100)
if success:
st.success("β
New settings have been applied.")
# Collapse tool addition expander
if "mcp_tools_expander" in st.session_state:
st.session_state.mcp_tools_expander = False
else:
st.error("β Failed to apply settings.")
# Refresh page
st.rerun()
st.divider() # Add divider
# Action buttons section
st.subheader("π Actions")
# Reset conversation button
if st.button("Reset Conversation", use_container_width=True, type="primary"):
# Reset thread_id
st.session_state.thread_id = random_uuid()
# Reset conversation history
st.session_state.history = []
# Notification message
st.success("β
Conversation has been reset.")
# Refresh page
st.rerun()
# Show logout button only if login feature is enabled
if use_login and st.session_state.authenticated:
st.divider() # Add divider
if st.button("Logout", use_container_width=True, type="secondary"):
st.session_state.authenticated = False
st.success("β
You have been logged out.")
st.rerun()
# --- Initialize default session (if not initialized) ---
if not st.session_state.session_initialized:
st.info(
"MCP server and agent are not initialized. Please click the 'Apply Settings' button in the left sidebar to initialize."
)
# --- Print conversation history ---
print_message()
# --- User input and processing ---
user_query = st.chat_input("π¬ Enter your question")
if user_query:
if st.session_state.session_initialized:
st.chat_message("user", avatar="π§βπ»").markdown(user_query)
with st.chat_message("assistant", avatar="π€"):
tool_placeholder = st.empty()
text_placeholder = st.empty()
resp, final_text, final_tool = (
st.session_state.event_loop.run_until_complete(
process_query(
user_query,
text_placeholder,
tool_placeholder,
st.session_state.timeout_seconds,
)
)
)
if "error" in resp:
st.error(resp["error"])
else:
st.session_state.history.append({"role": "user", "content": user_query})
st.session_state.history.append(
{"role": "assistant", "content": final_text}
)
if final_tool.strip():
st.session_state.history.append(
{"role": "assistant_tool", "content": final_tool}
)
st.rerun()
else:
st.warning(
"β οΈ MCP server and agent are not initialized. Please click the 'Apply Settings' button in the left sidebar to initialize."
)
|