File size: 20,387 Bytes
aa98b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# MCP + LangGraph Hands-On Tutorial\n",
    "\n",
    "- Author: [Teddy Notes](https://youtube.com/c/teddynote)\n",
    "- Lecture: [Fastcampus RAG trick notes](https://fastcampus.co.kr/data_online_teddy)\n",
    "\n",
    "**References**\n",
    "- https://modelcontextprotocol.io/introduction\n",
    "- https://github.com/langchain-ai/langchain-mcp-adapters"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## configure\n",
    "\n",
    "Refer to the installation instructions below to install `uv`.\n",
    "\n",
    "**How to install `uv`**\n",
    "\n",
    "```bash\n",
    "# macOS/Linux\n",
    "curl -LsSf https://astral.sh/uv/install.sh | sh\n",
    "\n",
    "# Windows (PowerShell)\n",
    "irm https://astral.sh/uv/install.ps1 | iex\n",
    "```\n",
    "\n",
    "Install **dependencies**\n",
    "\n",
    "```bash\n",
    "uv pip install -r requirements.txt\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Gets the environment variables."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## MultiServerMCPClient"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Run `mcp_server_remote.py` in advance. Open a terminal with the virtual environment activated and run the server.\n",
    "\n",
    "> Command\n",
    "```bash\n",
    "source .venv/bin/activate\n",
    "python mcp_server_remote.py\n",
    "```\n",
    "\n",
    "Create and terminate a temporary Session connection using `async with`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_mcp_adapters.client import MultiServerMCPClient\n",
    "from langgraph.prebuilt import create_react_agent\n",
    "from utils import ainvoke_graph, astream_graph\n",
    "from langchain_anthropic import ChatAnthropic\n",
    "\n",
    "model = ChatAnthropic(\n",
    "    model_name=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000\n",
    ")\n",
    "\n",
    "async with MultiServerMCPClient(\n",
    "    {\n",
    "        \"weather\": {\n",
    "            # Must match the server's port (port 8005)\n",
    "            \"url\": \"http://localhost:8005/sse\",\n",
    "            \"transport\": \"sse\",\n",
    "        }\n",
    "    }\n",
    ") as client:\n",
    "    print(client.get_tools())\n",
    "    agent = create_react_agent(model, client.get_tools())\n",
    "    answer = await astream_graph(\n",
    "        agent, {\"messages\": \"What's the weather like in Seoul?\"}\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You might notice that you can't access the tool because the session is closed."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "await astream_graph(agent, {\"messages\": \"What's the weather like in Seoul?\"})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now let's change that to accessing the tool while maintaining an Async Session."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Create client\n",
    "client = MultiServerMCPClient(\n",
    "    {\n",
    "        \"weather\": {\n",
    "            \"url\": \"http://localhost:8005/sse\",\n",
    "            \"transport\": \"sse\",\n",
    "        }\n",
    "    }\n",
    ")\n",
    "\n",
    "\n",
    "# 2. Explicitly initialize connection (this part is necessary)\n",
    "# Initialize\n",
    "await client.__aenter__()\n",
    "\n",
    "# Now tools are loaded\n",
    "print(client.get_tools())  # Tools are displayed"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create an agent with langgraph(`create_react_agent`)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create agent\n",
    "agent = create_react_agent(model, client.get_tools())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Run the graph to see the results."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "await astream_graph(agent, {\"messages\": \"What's the weather like in Seoul?\"})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Stdio method\n",
    "\n",
    "The Stdio method is intended for use in a local environment.\n",
    "\n",
    "- Use standard input/output for communication"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mcp import ClientSession, StdioServerParameters\n",
    "from mcp.client.stdio import stdio_client\n",
    "from langgraph.prebuilt import create_react_agent\n",
    "from langchain_mcp_adapters.tools import load_mcp_tools\n",
    "from langchain_anthropic import ChatAnthropic\n",
    "\n",
    "# Initialize Anthropic's Claude model\n",
    "model = ChatAnthropic(\n",
    "    model_name=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000\n",
    ")\n",
    "\n",
    "# Set up StdIO server parameters\n",
    "# - command: Path to Python interpreter\n",
    "# - args: MCP server script to execute\n",
    "server_params = StdioServerParameters(\n",
    "    command=\"./.venv/bin/python\",\n",
    "    args=[\"mcp_server_local.py\"],\n",
    ")\n",
    "\n",
    "# Use StdIO client to communicate with the server\n",
    "async with stdio_client(server_params) as (read, write):\n",
    "    # Create client session\n",
    "    async with ClientSession(read, write) as session:\n",
    "        # Initialize connection\n",
    "        await session.initialize()\n",
    "\n",
    "        # Load MCP tools\n",
    "        tools = await load_mcp_tools(session)\n",
    "        print(tools)\n",
    "\n",
    "        # Create agent\n",
    "        agent = create_react_agent(model, tools)\n",
    "\n",
    "        # Stream agent responses\n",
    "        await astream_graph(agent, {\"messages\": \"What's the weather like in Seoul?\"})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Use MCP server with RAG deployed\n",
    "\n",
    "- File: `mcp_server_rag.py`\n",
    "\n",
    "Use the `mcp_server_rag.py` file that we built with langchain in advance.\n",
    "\n",
    "It uses stdio communication to get information about the tools, where it gets the `retriever` tool, which is the tool defined in `mcp_server_rag.py`. This file **doesn't** need to be running on the server beforehand."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mcp import ClientSession, StdioServerParameters\n",
    "from mcp.client.stdio import stdio_client\n",
    "from langchain_mcp_adapters.tools import load_mcp_tools\n",
    "from langgraph.prebuilt import create_react_agent\n",
    "from langchain_anthropic import ChatAnthropic\n",
    "from utils import astream_graph\n",
    "\n",
    "# Initialize Anthropic's Claude model\n",
    "model = ChatAnthropic(\n",
    "    model_name=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000\n",
    ")\n",
    "\n",
    "# Set up StdIO server parameters for the RAG server\n",
    "server_params = StdioServerParameters(\n",
    "    command=\"./.venv/bin/python\",\n",
    "    args=[\"./mcp_server_rag.py\"],\n",
    ")\n",
    "\n",
    "# Use StdIO client to communicate with the RAG server\n",
    "async with stdio_client(server_params) as (read, write):\n",
    "    # Create client session\n",
    "    async with ClientSession(read, write) as session:\n",
    "        # Initialize connection\n",
    "        await session.initialize()\n",
    "\n",
    "        # Load MCP tools (in this case, the retriever tool)\n",
    "        tools = await load_mcp_tools(session)\n",
    "\n",
    "        # Create and run the agent\n",
    "        agent = create_react_agent(model, tools)\n",
    "\n",
    "        # Stream agent responses\n",
    "        await astream_graph(\n",
    "            agent,\n",
    "            {\n",
    "                \"messages\": \"Search for the name of the generative AI developed by Samsung Electronics\"\n",
    "            },\n",
    "        )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Use a mix of SSE and Stdio methods\n",
    "\n",
    "- File: `mcp_server_rag.py` communicates over Stdio\n",
    "- `langchain-dev-docs` communicates via SSE\n",
    "\n",
    "Use a mix of SSE and Stdio methods."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_mcp_adapters.client import MultiServerMCPClient\n",
    "from langgraph.prebuilt import create_react_agent\n",
    "from langchain_anthropic import ChatAnthropic\n",
    "\n",
    "# Initialize Anthropic's Claude model\n",
    "model = ChatAnthropic(\n",
    "    model_name=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000\n",
    ")\n",
    "\n",
    "# 1. Create multi-server MCP client\n",
    "client = MultiServerMCPClient(\n",
    "    {\n",
    "        \"document-retriever\": {\n",
    "            \"command\": \"./.venv/bin/python\",\n",
    "            # Update with the absolute path to mcp_server_rag.py file\n",
    "            \"args\": [\"./mcp_server_rag.py\"],\n",
    "            # Communicate via stdio (using standard input/output)\n",
    "            \"transport\": \"stdio\",\n",
    "        },\n",
    "        \"langchain-dev-docs\": {\n",
    "            # Make sure the SSE server is running\n",
    "            \"url\": \"https://teddynote.io/mcp/langchain/sse\",\n",
    "            # Communicate via SSE (Server-Sent Events)\n",
    "            \"transport\": \"sse\",\n",
    "        },\n",
    "    }\n",
    ")\n",
    "\n",
    "\n",
    "# 2. Initialize connection explicitly through async context manager\n",
    "await client.__aenter__()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create an agent using `create_react_agent` in langgraph."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langgraph.checkpoint.memory import MemorySaver\n",
    "from langchain_core.runnables import RunnableConfig\n",
    "\n",
    "prompt = (\n",
    "    \"You are a smart agent. \"\n",
    "    \"Use `retriever` tool to search on AI related documents and answer questions.\"\n",
    "    \"Use `langchain-dev-docs` tool to search on langchain / langgraph related documents and answer questions.\"\n",
    "    \"Answer in English.\"\n",
    ")\n",
    "agent = create_react_agent(\n",
    "    model, client.get_tools(), prompt=prompt, checkpointer=MemorySaver()\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Use the `retriever` tool defined in `mcp_server_rag.py` that you built to perform the search."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "config = RunnableConfig(recursion_limit=30, thread_id=1)\n",
    "await astream_graph(\n",
    "    agent,\n",
    "    {\n",
    "        \"messages\": \"Use the `retriever` tool to search for the name of the generative AI developed by Samsung Electronics\"\n",
    "    },\n",
    "    config=config,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This time, we'll use the `langchain-dev-docs` tool to perform the search."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "config = RunnableConfig(recursion_limit=30, thread_id=1)\n",
    "await astream_graph(\n",
    "    agent,\n",
    "    {\n",
    "        \"messages\": \"Please tell me about the definition of self-rag by referring to the langchain-dev-docs\"\n",
    "    },\n",
    "    config=config,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Use `MemorySaver` to maintain short-term memory, so multi-turn conversations are possible."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "await astream_graph(\n",
    "    agent,\n",
    "    {\"messages\": \"Summarize the previous content in bullet points\"},\n",
    "    config=config,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## LangChain-integrated tools + MCP tools\n",
    "\n",
    "Here we confirm that tools integrated into LangChain can be used in conjunction with existing MCP-only tools."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.tools.tavily_search import TavilySearchResults\n",
    "\n",
    "# Initialize the Tavily search tool (news type, news from the last 3 days)\n",
    "tavily = TavilySearchResults(max_results=3, topic=\"news\", days=3)\n",
    "\n",
    "# Use it together with existing MCP tools\n",
    "tools = client.get_tools() + [tavily]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create an agent using `create_react_agent` in langgraph."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langgraph.checkpoint.memory import MemorySaver\n",
    "from langchain_core.runnables import RunnableConfig\n",
    "\n",
    "prompt = \"You are a smart agent with various tools. Answer questions in English.\"\n",
    "agent = create_react_agent(model, tools, prompt=prompt, checkpointer=MemorySaver())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Perform a search using the newly added `tavily` tool."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "await astream_graph(\n",
    "    agent, {\"messages\": \"Tell me about today's news for me\"}, config=config\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can see that the `retriever` tool is working smoothly."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "await astream_graph(\n",
    "    agent,\n",
    "    {\n",
    "        \"messages\": \"Use the `retriever` tool to search for the name of the generative AI developed by Samsung Electronics\"\n",
    "    },\n",
    "    config=config,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Smithery MCP Server\n",
    "\n",
    "- Link: https://smithery.ai/\n",
    "\n",
    "List of tools used:\n",
    "\n",
    "- Sequential Thinking: https://smithery.ai/server/@smithery-ai/server-sequential-thinking\n",
    "  - MCP server providing tools for dynamic and reflective problem-solving through structured thinking processes\n",
    "- Desktop Commander: https://smithery.ai/server/@wonderwhy-er/desktop-commander\n",
    "  - Run terminal commands and manage files with various editing capabilities. Coding, shell and terminal, task automation\n",
    "\n",
    "**Note**\n",
    "\n",
    "- When importing tools provided by smithery in JSON format, you must set `\"transport\": \"stdio\"` as shown in the example below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_mcp_adapters.client import MultiServerMCPClient\n",
    "from langgraph.prebuilt import create_react_agent\n",
    "from langchain_anthropic import ChatAnthropic\n",
    "\n",
    "# Initialize LLM model\n",
    "model = ChatAnthropic(model=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000)\n",
    "\n",
    "# 1. Create client\n",
    "client = MultiServerMCPClient(\n",
    "    {\n",
    "        \"server-sequential-thinking\": {\n",
    "            \"command\": \"npx\",\n",
    "            \"args\": [\n",
    "                \"-y\",\n",
    "                \"@smithery/cli@latest\",\n",
    "                \"run\",\n",
    "                \"@smithery-ai/server-sequential-thinking\",\n",
    "                \"--key\",\n",
    "                \"your_smithery_api_key\",\n",
    "            ],\n",
    "            \"transport\": \"stdio\",  # Add communication using stdio method\n",
    "        },\n",
    "        \"desktop-commander\": {\n",
    "            \"command\": \"npx\",\n",
    "            \"args\": [\n",
    "                \"-y\",\n",
    "                \"@smithery/cli@latest\",\n",
    "                \"run\",\n",
    "                \"@wonderwhy-er/desktop-commander\",\n",
    "                \"--key\",\n",
    "                \"your_smithery_api_key\",\n",
    "            ],\n",
    "            \"transport\": \"stdio\",  # Add communication using stdio method\n",
    "        },\n",
    "        \"document-retriever\": {\n",
    "            \"command\": \"./.venv/bin/python\",\n",
    "            # Update with the absolute path to the mcp_server_rag.py file\n",
    "            \"args\": [\"./mcp_server_rag.py\"],\n",
    "            # Communication using stdio (standard input/output)\n",
    "            \"transport\": \"stdio\",\n",
    "        },\n",
    "    }\n",
    ")\n",
    "\n",
    "\n",
    "# 2. Explicitly initialize connection\n",
    "await client.__aenter__()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Create an agent using `create_react_agent` in langgraph."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langgraph.checkpoint.memory import MemorySaver\n",
    "from langchain_core.runnables import RunnableConfig\n",
    "\n",
    "# Set up configuration\n",
    "config = RunnableConfig(recursion_limit=30, thread_id=3)\n",
    "\n",
    "# Create agent\n",
    "agent = create_react_agent(model, client.get_tools(), checkpointer=MemorySaver())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`Desktop Commander` ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ„ฐ๋ฏธ๋„ ๋ช…๋ น์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "await astream_graph(\n",
    "    agent,\n",
    "    {\n",
    "        \"messages\": \"Draw the folder structure including the current path as a tree. However, exclude the .venv folder from the output.\"\n",
    "    },\n",
    "    config=config,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll use the `Sequential Thinking` tool to see if we can accomplish a relatively complex task."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "await astream_graph(\n",
    "    agent,\n",
    "    {\n",
    "        \"messages\": (\n",
    "            \"Use the `retriever` tool to search for information about generative AI developed by Samsung Electronics, \"\n",
    "            \"and then use the `Sequential Thinking` tool to write a report.\"\n",
    "        )\n",
    "    },\n",
    "    config=config,\n",
    ")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}