File size: 22,368 Bytes
03f3fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
import time
from asyncio.log import logger
import re
import uvicorn
import gc
import json
import torch
import random
import string

from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
from fastapi import FastAPI, HTTPException, Response
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
from transformers import AutoTokenizer, LogitsProcessor
from sse_starlette.sse import EventSourceResponse

EventSourceResponse.DEFAULT_PING_INTERVAL = 1000
import os

MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')
MAX_MODEL_LENGTH = 8192


@asynccontextmanager
async def lifespan(app: FastAPI):
    yield
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()


app = FastAPI(lifespan=lifespan)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


def generate_id(prefix: str, k=29) -> str:
    suffix = ''.join(random.choices(string.ascii_letters + string.digits, k=k))
    return f"{prefix}{suffix}"


class ModelCard(BaseModel):
    id: str = ""
    object: str = "model"
    created: int = Field(default_factory=lambda: int(time.time()))
    owned_by: str = "owner"
    root: Optional[str] = None
    parent: Optional[str] = None
    permission: Optional[list] = None


class ModelList(BaseModel):
    object: str = "list"
    data: List[ModelCard] = ["glm-4"]


class FunctionCall(BaseModel):
    name: Optional[str] = None
    arguments: Optional[str] = None


class ChoiceDeltaToolCallFunction(BaseModel):
    name: Optional[str] = None
    arguments: Optional[str] = None


class UsageInfo(BaseModel):
    prompt_tokens: int = 0
    total_tokens: int = 0
    completion_tokens: Optional[int] = 0


class ChatCompletionMessageToolCall(BaseModel):
    index: Optional[int] = 0
    id: Optional[str] = None
    function: FunctionCall
    type: Optional[Literal["function"]] = 'function'


class ChatMessage(BaseModel):
    # “function” 字段解释:
    # 使用较老的OpenAI API版本需要注意在这里添加 function 字段并在 process_messages函数中添加相应角色转换逻辑为 observation

    role: Literal["user", "assistant", "system", "tool"]
    content: Optional[str] = None
    function_call: Optional[ChoiceDeltaToolCallFunction] = None
    tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None


class DeltaMessage(BaseModel):
    role: Optional[Literal["user", "assistant", "system"]] = None
    content: Optional[str] = None
    function_call: Optional[ChoiceDeltaToolCallFunction] = None
    tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None


class ChatCompletionResponseChoice(BaseModel):
    index: int
    message: ChatMessage
    finish_reason: Literal["stop", "length", "tool_calls"]


class ChatCompletionResponseStreamChoice(BaseModel):
    delta: DeltaMessage
    finish_reason: Optional[Literal["stop", "length", "tool_calls"]]
    index: int


class ChatCompletionResponse(BaseModel):
    model: str
    id: Optional[str] = Field(default_factory=lambda: generate_id('chatcmpl-', 29))
    object: Literal["chat.completion", "chat.completion.chunk"]
    choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
    created: Optional[int] = Field(default_factory=lambda: int(time.time()))
    system_fingerprint: Optional[str] = Field(default_factory=lambda: generate_id('fp_', 9))
    usage: Optional[UsageInfo] = None


class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    temperature: Optional[float] = 0.8
    top_p: Optional[float] = 0.8
    max_tokens: Optional[int] = None
    stream: Optional[bool] = False
    tools: Optional[Union[dict, List[dict]]] = None
    tool_choice: Optional[Union[str, dict]] = None
    repetition_penalty: Optional[float] = 1.1


class InvalidScoreLogitsProcessor(LogitsProcessor):
    def __call__(
            self, input_ids: torch.LongTensor, scores: torch.FloatTensor
    ) -> torch.FloatTensor:
        if torch.isnan(scores).any() or torch.isinf(scores).any():
            scores.zero_()
            scores[..., 5] = 5e4
        return scores


def process_response(output: str, tools: dict | List[dict] = None, use_tool: bool = False) -> Union[str, dict]:
    lines = output.strip().split("\n")
    arguments_json = None
    special_tools = ["cogview", "simple_browser"]
    tools = {tool['function']['name'] for tool in tools} if tools else {}

    # 这是一个简单的工具比较函数,不能保证拦截所有非工具输出的结果,比如参数未对齐等特殊情况。
    ##TODO 如果你希望做更多判断,可以在这里进行逻辑完善。

    if len(lines) >= 2 and lines[1].startswith("{"):
        function_name = lines[0].strip()
        arguments = "\n".join(lines[1:]).strip()
        if function_name in tools or function_name in special_tools:
            try:
                arguments_json = json.loads(arguments)
                is_tool_call = True
            except json.JSONDecodeError:
                is_tool_call = function_name in special_tools

            if is_tool_call and use_tool:
                content = {
                    "name": function_name,
                    "arguments": json.dumps(arguments_json if isinstance(arguments_json, dict) else arguments,
                                            ensure_ascii=False)
                }
                if function_name == "simple_browser":
                    search_pattern = re.compile(r'search\("(.+?)"\s*,\s*recency_days\s*=\s*(\d+)\)')
                    match = search_pattern.match(arguments)
                    if match:
                        content["arguments"] = json.dumps({
                            "query": match.group(1),
                            "recency_days": int(match.group(2))
                        }, ensure_ascii=False)
                elif function_name == "cogview":
                    content["arguments"] = json.dumps({
                        "prompt": arguments
                    }, ensure_ascii=False)

                return content
    return output.strip()


@torch.inference_mode()
async def generate_stream_glm4(params):
    messages = params["messages"]
    tools = params["tools"]
    tool_choice = params["tool_choice"]
    temperature = float(params.get("temperature", 1.0))
    repetition_penalty = float(params.get("repetition_penalty", 1.0))
    top_p = float(params.get("top_p", 1.0))
    max_new_tokens = int(params.get("max_tokens", 8192))

    messages = process_messages(messages, tools=tools, tool_choice=tool_choice)
    inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    params_dict = {
        "n": 1,
        "best_of": 1,
        "presence_penalty": 1.0,
        "frequency_penalty": 0.0,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": -1,
        "repetition_penalty": repetition_penalty,
        "use_beam_search": False,
        "length_penalty": 1,
        "early_stopping": False,
        "stop_token_ids": [151329, 151336, 151338],
        "ignore_eos": False,
        "max_tokens": max_new_tokens,
        "logprobs": None,
        "prompt_logprobs": None,
        "skip_special_tokens": True,
    }
    sampling_params = SamplingParams(**params_dict)
    async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
        output_len = len(output.outputs[0].token_ids)
        input_len = len(output.prompt_token_ids)
        ret = {
            "text": output.outputs[0].text,
            "usage": {
                "prompt_tokens": input_len,
                "completion_tokens": output_len,
                "total_tokens": output_len + input_len
            },
            "finish_reason": output.outputs[0].finish_reason,
        }
        yield ret
    gc.collect()
    torch.cuda.empty_cache()


def process_messages(messages, tools=None, tool_choice="none"):
    _messages = messages
    processed_messages = []
    msg_has_sys = False

    def filter_tools(tool_choice, tools):
        function_name = tool_choice.get('function', {}).get('name', None)
        if not function_name:
            return []
        filtered_tools = [
            tool for tool in tools
            if tool.get('function', {}).get('name') == function_name
        ]
        return filtered_tools

    if tool_choice != "none":
        if isinstance(tool_choice, dict):
            tools = filter_tools(tool_choice, tools)
        if tools:
            processed_messages.append(
                {
                    "role": "system",
                    "content": None,
                    "tools": tools
                }
            )
            msg_has_sys = True

    if isinstance(tool_choice, dict) and tools:
        processed_messages.append(
            {
                "role": "assistant",
                "metadata": tool_choice["function"]["name"],
                "content": ""
            }
        )

    for m in _messages:
        role, content, func_call = m.role, m.content, m.function_call
        tool_calls = getattr(m, 'tool_calls', None)

        if role == "function":
            processed_messages.append(
                {
                    "role": "observation",
                    "content": content
                }
            )
        elif role == "tool":
            processed_messages.append(
                {
                    "role": "observation",
                    "content": content,
                    "function_call": True
                }
            )
        elif role == "assistant":
            if tool_calls:
                for tool_call in tool_calls:
                    processed_messages.append(
                        {
                            "role": "assistant",
                            "metadata": tool_call.function.name,
                            "content": tool_call.function.arguments
                        }
                    )
            else:
                for response in content.split("\n"):
                    if "\n" in response:
                        metadata, sub_content = response.split("\n", maxsplit=1)
                    else:
                        metadata, sub_content = "", response
                    processed_messages.append(
                        {
                            "role": role,
                            "metadata": metadata,
                            "content": sub_content.strip()
                        }
                    )
        else:
            if role == "system" and msg_has_sys:
                msg_has_sys = False
                continue
            processed_messages.append({"role": role, "content": content})

    if not tools or tool_choice == "none":
        for m in _messages:
            if m.role == 'system':
                processed_messages.insert(0, {"role": m.role, "content": m.content})
                break
    return processed_messages


@app.get("/health")
async def health() -> Response:
    """Health check."""
    return Response(status_code=200)


@app.get("/v1/models", response_model=ModelList)
async def list_models():
    model_card = ModelCard(id="glm-4")
    return ModelList(data=[model_card])


@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
    if len(request.messages) < 1 or request.messages[-1].role == "assistant":
        raise HTTPException(status_code=400, detail="Invalid request")

    gen_params = dict(
        messages=request.messages,
        temperature=request.temperature,
        top_p=request.top_p,
        max_tokens=request.max_tokens or 1024,
        echo=False,
        stream=request.stream,
        repetition_penalty=request.repetition_penalty,
        tools=request.tools,
        tool_choice=request.tool_choice,
    )
    logger.debug(f"==== request ====\n{gen_params}")

    if request.stream:
        predict_stream_generator = predict_stream(request.model, gen_params)
        output = await anext(predict_stream_generator)
        if output:
            return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
        logger.debug(f"First result output:\n{output}")

        function_call = None
        if output and request.tools:
            try:
                function_call = process_response(output, request.tools, use_tool=True)
            except:
                logger.warning("Failed to parse tool call")

        if isinstance(function_call, dict):
            function_call = ChoiceDeltaToolCallFunction(**function_call)
            generate = parse_output_text(request.model, output, function_call=function_call)
            return EventSourceResponse(generate, media_type="text/event-stream")
        else:
            return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
    response = ""
    async for response in generate_stream_glm4(gen_params):
        pass

    if response["text"].startswith("\n"):
        response["text"] = response["text"][1:]
    response["text"] = response["text"].strip()

    usage = UsageInfo()

    function_call, finish_reason = None, "stop"
    tool_calls = None
    if request.tools:
        try:
            function_call = process_response(response["text"], request.tools, use_tool=True)
        except Exception as e:
            logger.warning(f"Failed to parse tool call: {e}")
    if isinstance(function_call, dict):
        finish_reason = "tool_calls"
        function_call_response = ChoiceDeltaToolCallFunction(**function_call)
        function_call_instance = FunctionCall(
            name=function_call_response.name,
            arguments=function_call_response.arguments
        )
        tool_calls = [
            ChatCompletionMessageToolCall(
                id=generate_id('call_', 24),
                function=function_call_instance,
                type="function")]

    message = ChatMessage(
        role="assistant",
        content=None if tool_calls else response["text"],
        function_call=None,
        tool_calls=tool_calls,
    )

    logger.debug(f"==== message ====\n{message}")

    choice_data = ChatCompletionResponseChoice(
        index=0,
        message=message,
        finish_reason=finish_reason,
    )
    task_usage = UsageInfo.model_validate(response["usage"])
    for usage_key, usage_value in task_usage.model_dump().items():
        setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)

    return ChatCompletionResponse(
        model=request.model,
        choices=[choice_data],
        object="chat.completion",
        usage=usage
    )


async def predict_stream(model_id, gen_params):
    output = ""
    is_function_call = False
    has_send_first_chunk = False
    created_time = int(time.time())
    function_name = None
    response_id = generate_id('chatcmpl-', 29)
    system_fingerprint = generate_id('fp_', 9)
    tools = {tool['function']['name'] for tool in gen_params['tools']} if gen_params['tools'] else {}
    async for new_response in generate_stream_glm4(gen_params):
        decoded_unicode = new_response["text"]
        delta_text = decoded_unicode[len(output):]
        output = decoded_unicode
        lines = output.strip().split("\n")

        # 检查是否为工具
        # 这是一个简单的工具比较函数,不能保证拦截所有非工具输出的结果,比如参数未对齐等特殊情况。
        ##TODO 如果你希望做更多处理,可以在这里进行逻辑完善。

        if not is_function_call and len(lines) >= 2:
            first_line = lines[0].strip()
            if first_line in tools:
                is_function_call = True
                function_name = first_line

        # 工具调用返回
        if is_function_call:
            if not has_send_first_chunk:
                function_call = {"name": function_name, "arguments": ""}
                tool_call = ChatCompletionMessageToolCall(
                    index=0,
                    id=generate_id('call_', 24),
                    function=FunctionCall(**function_call),
                    type="function"
                )
                message = DeltaMessage(
                    content=None,
                    role="assistant",
                    function_call=None,
                    tool_calls=[tool_call]
                )
                choice_data = ChatCompletionResponseStreamChoice(
                    index=0,
                    delta=message,
                    finish_reason=None
                )
                chunk = ChatCompletionResponse(
                    model=model_id,
                    id=response_id,
                    choices=[choice_data],
                    created=created_time,
                    system_fingerprint=system_fingerprint,
                    object="chat.completion.chunk"
                )
                yield ""
                yield chunk.model_dump_json(exclude_unset=True)
                has_send_first_chunk = True

            function_call = {"name": None, "arguments": delta_text}
            tool_call = ChatCompletionMessageToolCall(
                index=0,
                id=None,
                function=FunctionCall(**function_call),
                type="function"
            )
            message = DeltaMessage(
                content=None,
                role=None,
                function_call=None,
                tool_calls=[tool_call]
            )
            choice_data = ChatCompletionResponseStreamChoice(
                index=0,
                delta=message,
                finish_reason=None
            )
            chunk = ChatCompletionResponse(
                model=model_id,
                id=response_id,
                choices=[choice_data],
                created=created_time,
                system_fingerprint=system_fingerprint,
                object="chat.completion.chunk"
            )
            yield chunk.model_dump_json(exclude_unset=True)

        # 用户请求了 Function Call 但是框架还没确定是否为Function Call
        elif (gen_params["tools"] and gen_params["tool_choice"] != "none") or is_function_call:
            continue

        # 常规返回
        else:
            finish_reason = new_response.get("finish_reason", None)
            if not has_send_first_chunk:
                message = DeltaMessage(
                    content="",
                    role="assistant",
                    function_call=None,
                )
                choice_data = ChatCompletionResponseStreamChoice(
                    index=0,
                    delta=message,
                    finish_reason=finish_reason
                )
                chunk = ChatCompletionResponse(
                    model=model_id,
                    id=response_id,
                    choices=[choice_data],
                    created=created_time,
                    system_fingerprint=system_fingerprint,
                    object="chat.completion.chunk"
                )
                yield chunk.model_dump_json(exclude_unset=True)
                has_send_first_chunk = True

            message = DeltaMessage(
                content=delta_text,
                role="assistant",
                function_call=None,
            )
            choice_data = ChatCompletionResponseStreamChoice(
                index=0,
                delta=message,
                finish_reason=finish_reason
            )
            chunk = ChatCompletionResponse(
                model=model_id,
                id=response_id,
                choices=[choice_data],
                created=created_time,
                system_fingerprint=system_fingerprint,
                object="chat.completion.chunk"
            )
            yield chunk.model_dump_json(exclude_unset=True)

    # 工具调用需要额外返回一个字段以对齐 OpenAI 接口
    if is_function_call:
        yield ChatCompletionResponse(
            model=model_id,
            id=response_id,
            system_fingerprint=system_fingerprint,
            choices=[
                ChatCompletionResponseStreamChoice(
                    index=0,
                    delta=DeltaMessage(
                        content=None,
                        role=None,
                        function_call=None,
                    ),
                    finish_reason="tool_calls"
                )],
            created=created_time,
            object="chat.completion.chunk",
            usage=None
        ).model_dump_json(exclude_unset=True)
    yield '[DONE]'


async def parse_output_text(model_id: str, value: str, function_call: ChoiceDeltaToolCallFunction = None):
    delta = DeltaMessage(role="assistant", content=value)
    if function_call is not None:
        delta.function_call = function_call

    choice_data = ChatCompletionResponseStreamChoice(
        index=0,
        delta=delta,
        finish_reason=None
    )
    chunk = ChatCompletionResponse(
        model=model_id,
        choices=[choice_data],
        object="chat.completion.chunk"
    )
    yield "{}".format(chunk.model_dump_json(exclude_unset=True))
    yield '[DONE]'


if __name__ == "__main__":
    tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
    engine_args = AsyncEngineArgs(
        model=MODEL_PATH,
        tokenizer=MODEL_PATH,
        # 如果你有多张显卡,可以在这里设置成你的显卡数量
        tensor_parallel_size=1,
        dtype="bfloat16",
        trust_remote_code=True,
        # 占用显存的比例,请根据你的显卡显存大小设置合适的值,例如,如果你的显卡有80G,您只想使用24G,请按照24/80=0.3设置
        gpu_memory_utilization=0.9,
        enforce_eager=True,
        worker_use_ray=False,
        engine_use_ray=False,
        disable_log_requests=True,
        max_model_len=MAX_MODEL_LENGTH,
    )
    engine = AsyncLLMEngine.from_engine_args(engine_args)
    uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)