File size: 4,299 Bytes
8980160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7f7dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8980160
 
 
 
 
 
 
 
 
 
 
 
7a7f7dc
 
4f5dfd2
7a7f7dc
8980160
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7f7dc
 
 
 
 
 
 
8980160
 
4f5dfd2
7a7f7dc
8980160
 
7a7f7dc
8980160
 
 
 
7a7f7dc
 
 
 
b37e907
767716e
7a7f7dc
8980160
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer


# summary function - test for single gradio function interfrace
def bulk_function(filename):
  # Create class for data preparation
  class SimpleDataset:
      def __init__(self, tokenized_texts):
          self.tokenized_texts = tokenized_texts
      
      def __len__(self):
          return len(self.tokenized_texts["input_ids"])
      
      def __getitem__(self, idx):
          return {k: v[idx] for k, v in self.tokenized_texts.items()}

  # load tokenizer and model, create trainer
  model_name = "j-hartmann/emotion-english-distilroberta-base"
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
  trainer = Trainer(model=model)  
  print(filename, type(filename))
  print(filename.name)


  # check type of input file
  if filename.name.split(".")[1] == "csv":
    print("entered")
    # read file, drop index if exists
    df_input = pd.read_csv(filename.name, index_col=False)
    if df_input.columns[0] == "Unnamed: 0":
      df_input = df_input.drop("Unnamed: 0", axis=1)
  elif filename.name.split(".")[1] == "xlsx":
    df_input = pd.read_excel(filename.name, index_col=False)
    # handle Unnamed
    if df_input.columns[0] == "Unnamed: 0":
      df_input = df_input.drop("Unnamed: 0", axis=1)
  else:
    return


  # read csv
  # even if index given, drop it
  #df_input = pd.read_csv(filename.name, index_col=False)
  #print("df_input", df_input)
  
  # expect csv format to be in: 
  # 1: ID
  # 2: Texts
  # no index
  # store ids in ordered list
  ids = df_input[df_input.columns[0]].to_list()

  # store sentences in ordered list
  # expects sentences to be in second col
  # of csv with two cols
  lines_s = df_input[df_input.columns[1]].to_list()

    # Tokenize texts and create prediction data set
  tokenized_texts = tokenizer(lines_s,truncation=True,padding=True)
  pred_dataset = SimpleDataset(tokenized_texts)

    # Run predictions -> predict whole df
  predictions = trainer.predict(pred_dataset)

    # Transform predictions to labels
  preds = predictions.predictions.argmax(-1)
  labels = pd.Series(preds).map(model.config.id2label)
  scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)

  # round scores
  scores_rounded = [round(score, 3) for score in scores]

    # scores raw
  temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))

  # container
  anger = []
  disgust = []
  fear = []
  joy = []
  neutral = []
  sadness = []
  surprise = []

  # extract scores (as many entries as exist in pred_texts)
  for i in range(len(lines_s)):
    anger.append(round(temp[i][0], 3))
    disgust.append(round(temp[i][1], 3))
    fear.append(round(temp[i][2], 3))
    joy.append(round(temp[i][3], 3))
    neutral.append(round(temp[i][4], 3))
    sadness.append(round(temp[i][5], 3))
    surprise.append(round(temp[i][6], 3))

  # define df
  df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=[df_input.columns[0], df_input.columns[1],'max_label','max_score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
  print(df)
  # save results to csv
  YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv"  # name your output file
  df.to_csv(YOUR_FILENAME, index=False)

  # return dataframe for space output
  return YOUR_FILENAME
  
gr.Interface(bulk_function, inputs=[gr.inputs.File(file_count="single", type="file", label="Upload file", optional=False),],
             outputs=[gr.outputs.File(label="Output file")],
            # examples=[["YOUR_FILENAME.csv"]], # computes, doesn't export df so far
             theme="huggingface",
             title="Emotion Classification from CSV",
             description="Upload csv file with 2 columns (in order): (a) ID column, (b) text column. The script returns a new file that includes both the ID column and text column together with the emotion predictions using this model: https://huggingface.co/j-hartmann/emotion-english-distilroberta-base.",
             allow_flagging=False,
             ).launch(debug=True)