File size: 24,329 Bytes
ec5e5fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
from typing import Callable, Optional, Tuple

import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, unfreeze
from jax import lax
from jax.random import PRNGKey
from transformers import GPT2Config, FlaxViTModel, ViTConfig
from transformers.modeling_flax_outputs import (
    FlaxCausalLMOutputWithCrossAttentions,
    FlaxSeq2SeqLMOutput,
    FlaxSeq2SeqModelOutput,
)
from transformers.models.bart.modeling_flax_bart import (
    shift_tokens_right,
)
from .modeling_flax_gpt2 import (
    FlaxGPT2Module,
    FlaxGPT2Model,
    FlaxGPT2LMHeadModule,
    FlaxGPT2LMHeadModel,
    FlaxPreTrainedModel
)
from transformers.models.vit.modeling_flax_vit import FlaxViTModule

from .configuration_vit_gpt2 import ViTGPT2Config


def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = jnp.roll(input_ids, 1, axis=-1)
    shifted_input_ids = jax.ops.index_update(shifted_input_ids, (..., 0), decoder_start_token_id)
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)

    return shifted_input_ids

class FlaxViTGPT2LMModule(nn.Module):
    config: ViTGPT2Config
    dtype: jnp.dtype = jnp.float32  # the dtype of the computation

    def setup(self):

        self.encoder = FlaxViTModule(self.config.vit_config, dtype=self.dtype)
        self.decoder = FlaxGPT2LMHeadModule(self.config.gpt2_config, dtype=self.dtype)

    def _get_encoder_module(self):
        return self.encoder

    def _get_decoder_module(self):
        return self.decoder

    def __call__(
            self,
            pixel_values,
            input_ids,
            attention_mask,
            position_ids,
            encoder_attention_mask: Optional[jnp.ndarray] = None,
            output_attentions: bool = False,
            output_hidden_states: bool = False,
            return_dict: bool = True,
            deterministic: bool = True,
    ):
        encoder_outputs = self.encoder(
            pixel_values=pixel_values,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        decoder_outputs = self.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=encoder_attention_mask,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return FlaxSeq2SeqLMOutput(
            logits=decoder_outputs.logits,
            decoder_hidden_states=decoder_outputs.decoder_hidden_states,
            decoder_attentions=decoder_outputs.decoder_attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

class FlaxViTGPT2LMForConditionalGenerationModule(nn.Module):
    config: ViTGPT2Config
    dtype: jnp.dtype = jnp.float32
    bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros

    def setup(self):
        self.model = FlaxViTGPT2LMModule(config=self.config, dtype=self.dtype)

    def _get_encoder_module(self):
        return self.model.encoder

    def _get_decoder_module(self):
        return self.model.decoder

    def __call__(
        self,
        pixel_values,
        input_ids,
        attention_mask,
        position_ids,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
        deterministic: bool = True,
    ):
        outputs = self.model(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=deterministic,
        )

        return outputs


class FlaxViTGPT2LMPreTrainedModel(FlaxPreTrainedModel):
    config_class = ViTGPT2Config
    base_model_prefix: str = "model"
    module_class: nn.Module = None

    def __init__(
        self,
        config: ViTGPT2Config,
        input_shape: Tuple = None,
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        **kwargs,
    ):
        if input_shape is None:
            input_shape = (
                (1, config.vit_config.image_size, config.vit_config.image_size, 3),
                (1, 1),
            )

        module = self.module_class(config=config, dtype=dtype, **kwargs)
        super().__init__(
            config, module, input_shape=input_shape, seed=seed, dtype=dtype
        )

    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
        # init input tensors
        pixel_values = jax.random.normal(rng, input_shape[0])
        # # make sure initialization pass will work for FlaxBartForSequenceClassificationModule
        # input_ids = jax.ops.index_update(input_ids, (..., -1), self.config.eos_token_id)

        input_ids = jnp.zeros(input_shape[1], dtype="i4")
        attention_mask = jnp.ones_like(input_ids)

        batch_size, sequence_length = input_ids.shape
        position_ids = jnp.broadcast_to(
            jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
        )

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.module.init(
            rngs,
            pixel_values,
            input_ids,
            attention_mask,
            position_ids,
        )["params"]

    def init_cache(self, batch_size, max_length, encoder_outputs):

        input_ids = jnp.ones((batch_size, max_length), dtype="i4")
        attention_mask = jnp.ones_like(input_ids)
        position_ids = jnp.broadcast_to(
            jnp.arange(jnp.atleast_2d(input_ids).shape[-1]),
            input_ids.shape,
        )

        def _decoder_forward(
            module,
            input_ids,
            attention_mask,
            position_ids,
            **kwargs,
        ):
            decoder_module = module._get_decoder_module()
            return decoder_module(
                input_ids,
                attention_mask,
                position_ids,
                **kwargs,
            )

        init_variables = self.module.init(
            jax.random.PRNGKey(0),
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            encoder_hidden_states=encoder_outputs[0],
            init_cache=True,
            method=_decoder_forward,  # we only need to call the decoder to init the cache
        )
        return unfreeze(init_variables["cache"])

    def encode(
        self,
        pixel_values: jnp.ndarray,
        attention_mask: Optional[jnp.ndarray] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.return_dict
        )

        pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        def _encoder_forward(module, pixel_values, **kwargs):
            encode_module = module._get_encoder_module()
            return encode_module(pixel_values, **kwargs)

        return self.module.apply(
            {"params": params or self.params},
            pixel_values=jnp.array(pixel_values, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
            method=_encoder_forward,
        )

    def decode(
        self,
        input_ids,
        encoder_outputs,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        attention_mask: Optional[jnp.ndarray] = None,
        position_ids: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.return_dict
        )

        encoder_hidden_states = encoder_outputs[0]
        if encoder_attention_mask is None:
            batch_size, sequence_length = encoder_hidden_states.shape[:2]
            encoder_attention_mask = jnp.ones((batch_size, sequence_length))

        batch_size, sequence_length = input_ids.shape
        if attention_mask is None:
            attention_mask = jnp.ones((batch_size, sequence_length))

        if position_ids is None:
            if past_key_values is not None:
                raise ValueError(
                    "Make sure to provide `position_ids` when passing `past_key_values`."
                )

            position_ids = jnp.broadcast_to(
                jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
            )

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
        # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
        # it can be changed by FlaxGPT2Attention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        def _decoder_forward(
            module,
            input_ids,
            attention_mask,
            position_ids,
            **kwargs,
        ):
            decoder_module = module._get_decoder_module()
            return decoder_module(
                input_ids,
                attention_mask,
                position_ids,
                **kwargs,
            )

        outputs = self.module.apply(
            inputs,
            input_ids=jnp.array(input_ids, dtype="i4"),
            attention_mask=jnp.array(attention_mask, dtype="i4"),
            position_ids=jnp.array(position_ids, dtype="i4"),
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
            mutable=mutable,
            method=_decoder_forward,
        )

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs, past = outputs
            outputs["past_key_values"] = unfreeze(past["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs, past = outputs
            outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]

        return outputs

    def __call__(
        self,
        pixel_values: jnp.ndarray,
        input_ids: Optional[jnp.ndarray] = None,
        attention_mask: Optional[jnp.ndarray] = None,
        position_ids: Optional[jnp.ndarray] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.return_dict
        )

        pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))

        # # prepare encoder inputs
        # if encoder_attention_mask is None:
        #     encoder_attention_mask = jnp.ones_like(input_ids)

        # if position_ids is None:
        #     batch_size, sequence_length = input_ids.shape
        #     position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

        # prepare decoder inputs
        # if decoder_input_ids is None:
        #     decoder_input_ids = shift_tokens_right(
        #         input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
        #     ) # TODO: Check how to use this

        if attention_mask is None:
            attention_mask = jnp.ones_like(input_ids)
        if position_ids is None:
            batch_size, sequence_length = input_ids.shape
            position_ids = jnp.broadcast_to(
                jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
            )

        # Handle any PRNG if needed
        rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}

        return self.module.apply(
            {"params": params or self.params},
            pixel_values=jnp.array(pixel_values, dtype=jnp.float32),
            input_ids=jnp.array(input_ids, dtype="i4"),
            attention_mask=jnp.array(attention_mask, dtype="i4"),
            position_ids=jnp.array(position_ids, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
        )


class FlaxViTGPT2LMForConditionalGeneration(FlaxViTGPT2LMPreTrainedModel):
    module_class = FlaxViTGPT2LMForConditionalGenerationModule
    dtype: jnp.dtype = jnp.float32

    def decode(
        self,
        input_ids,
        encoder_outputs,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        attention_mask: Optional[jnp.ndarray] = None,
        position_ids: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        deterministic: bool = True,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.return_dict
        )

        encoder_hidden_states = encoder_outputs[0]
        if encoder_attention_mask is None:
            batch_size, sequence_length = encoder_hidden_states.shape[:2]
            encoder_attention_mask = jnp.ones((batch_size, sequence_length))

        batch_size, sequence_length = input_ids.shape
        if attention_mask is None:
            attention_mask = jnp.ones((batch_size, sequence_length))

        if position_ids is None:
            if past_key_values is not None:
                raise ValueError(
                    "Make sure to provide `position_ids` when passing `past_key_values`."
                )

            position_ids = jnp.broadcast_to(
                jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
            )

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
        # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
        # it can be changed by FlaxGPT2Attention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        def _decoder_forward(
            module,
            input_ids,
            attention_mask,
            position_ids,
            **kwargs,
        ):
            decoder_module = module._get_decoder_module()
            outputs = decoder_module(
                input_ids,
                attention_mask,
                position_ids,
                **kwargs,
            )
            lm_logits = outputs[0]

            return lm_logits, outputs

        outputs = self.module.apply(
            inputs,
            input_ids=jnp.array(input_ids, dtype="i4"),
            attention_mask=jnp.array(attention_mask, dtype="i4"),
            position_ids=jnp.array(position_ids, dtype="i4"),
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=deterministic,
            rngs=rngs,
            mutable=mutable,
            method=_decoder_forward,
        )

        if past_key_values is None:
            lm_logits, outputs = outputs
        else:
            (lm_logits, outputs), past = outputs

        if return_dict:
            outputs = FlaxCausalLMOutputWithCrossAttentions(
                logits=lm_logits,
                hidden_states=outputs.decoder_hidden_states,
                attentions=outputs.decoder_attentions,
                cross_attentions=outputs.cross_attentions,
            )
        else:
            outputs = (lm_logits,) + outputs[1:]

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs["past_key_values"] = unfreeze(past["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]

        return outputs

    def prepare_inputs_for_generation(
        self,
        input_ids,
        max_length,
        encoder_attention_mask: Optional[jnp.DeviceArray] = None,
        attention_mask: Optional[jnp.DeviceArray] = None,
        encoder_outputs=None,
        **kwargs,
    ):
        # initializing the cache
        batch_size, seq_length = input_ids.shape

        past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
        # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
        # But since the decoder uses a causal mask, those positions are masked anyways.
        # Thus we can create a single static attention_mask here, which is more efficient for compilation
        extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
        if attention_mask is not None:
            position_ids = attention_mask.cumsum(axis=-1) - 1
            extended_attention_mask = lax.dynamic_update_slice(
                extended_attention_mask, attention_mask, (0, 0)
            )
        else:
            position_ids = jnp.broadcast_to(
                jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
            )

        return {
            "past_key_values": past_key_values,
            "encoder_outputs": encoder_outputs,
            "encoder_attention_mask": encoder_attention_mask,
            "attention_mask": extended_attention_mask,
            "position_ids": position_ids,
        }

    def update_inputs_for_generation(self, model_outputs, model_kwargs):
        model_kwargs["past_key_values"] = model_outputs.past_key_values
        model_kwargs["position_ids"] = (
            model_kwargs["position_ids"][:, -1:] + 1
        )
        return model_kwargs

    @classmethod
    def from_vit_gpt2_pretrained(
        cls,
        vit_model_name_or_path: str = None,
        gpt2_model_name_or_path: str = None,
        *model_args,
        **kwargs,
    ) -> FlaxViTGPT2LMPreTrainedModel:

        kwargs_gpt2 = {
            argument[len("gpt2_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("gpt2_")
        }

        kwargs_vit = {
            argument[len("vit_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("vit_")
        }

        # remove gpt2, vit kwargs from kwargs
        for key in kwargs_gpt2.keys():
            del kwargs["gpt2_" + key]
        for key in kwargs_vit.keys():
            del kwargs["vit_" + key]

        # Load and initialize the gpt2 and vit model
        gpt2_model = kwargs_gpt2.pop("model", None)
        if gpt2_model is None:
            assert (
                gpt2_model_name_or_path is not None
            ), "If `model` is not defined as an argument, a `gpt2_model_name_or_path` has to be defined"

            if "config" not in kwargs_gpt2:
                gpt2_config = GPT2Config.from_pretrained(gpt2_model_name_or_path)
                kwargs_gpt2["config"] = gpt2_config

            kwargs_gpt2["config"].add_cross_attention = True
            gpt2_model = FlaxGPT2LMHeadModel.from_pretrained(
                gpt2_model_name_or_path, *model_args, **kwargs_gpt2
            )

        vit_model = kwargs_vit.pop("model", None)
        if vit_model is None:
            assert (
                vit_model_name_or_path is not None
            ), "If `model` is not defined as an argument, a `vit_model_name_or_path` has to be defined"

            if "config" not in kwargs_vit:
                vit_config = ViTConfig.from_pretrained(vit_model_name_or_path)
                kwargs_vit["config"] = vit_config

            vit_model = FlaxViTModel.from_pretrained(
                vit_model_name_or_path, *model_args, **kwargs_vit
            )

        # instantiate config with corresponding kwargs
        dtype = kwargs.pop("dtype", jnp.float32)
        config = ViTGPT2Config.from_vit_gpt2_configs(
            vit_model.config, gpt2_model.config, **kwargs
        )

        # init model
        model = cls(config, *model_args, dtype=dtype, **kwargs)
        model.params["model"]["encoder"] = vit_model.params
        model.params["model"]["decoder"] = gpt2_model.params

        return model