File size: 8,928 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import torch
from datasets import Dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer

from trl import RLOOConfig, RLOOTrainer


class RLOOTrainerTester(unittest.TestCase):
    def setUp(self):
        self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"

        self.policy_model = AutoModelForCausalLM.from_pretrained(self.model_id)
        self.reward_model = AutoModelForSequenceClassification.from_pretrained(self.model_id)
        self.policy_ref_model = AutoModelForCausalLM.from_pretrained(self.model_id)

        self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, padding_side="left")
        self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})

    def test_rloo_checkpoint(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = RLOOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                total_episodes=1,
                report_to="none",
            )

            dummy_text = [{"content": "Hello World!", "role": "user"}]
            dummy_data = self.tokenizer.apply_chat_template(dummy_text)
            dummy_dataset = Dataset.from_dict({"input_ids": dummy_data})

            trainer = RLOOTrainer(
                config=training_args,
                policy=self.policy_model,
                reward_model=self.reward_model,
                ref_policy=self.policy_ref_model,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset,
                eval_dataset=dummy_dataset,
            )

            trainer._save_checkpoint(trainer.model, trial=None)

    def test_rloo_reward(self):
        local_batch_size = 3
        rloo_k = 4
        sequence_length = 5  # Add sequence length for testing token-level rewards

        # fmt: off
        rlhf_reward = torch.tensor([
            1, 2, 3, # first rlhf reward for three prompts
            2, 3, 4, # second rlhf reward for three prompts
            5, 6, 7, # third rlhf reward for three prompts
            8, 9, 10, # fourth rlhf reward for three prompts
        ]).float()

        # Create padding mask where 1 indicates valid token, 0 indicates padding
        padding_mask = torch.ones(local_batch_size * rloo_k, sequence_length)
        # Set padding based on sequence lengths
        sequence_lengths = torch.tensor([
            3, 4, 3,  # lengths for first batch
            4, 3, 4,  # lengths for second batch
            3, 4, 3,  # lengths for third batch
            4, 3, 4,  # lengths for fourth batch
        ])
        for i, length in enumerate(sequence_lengths):
            padding_mask[i, length:] = 0

        # Add kl tensor for testing token-level rewards
        kl = torch.ones(local_batch_size * rloo_k, sequence_length)  # Dummy KL values
        # fmt: on

        # Test token-level KL rewards following OpenRLHF implementation
        kl_coef = 0.1
        kl_reward = -kl_coef * kl

        # Find last non-padded position
        eos_indices = padding_mask.size(1) - 1 - padding_mask.long().fliplr().argmax(dim=1, keepdim=True)

        # Create last reward tensor
        last_reward = torch.zeros_like(kl)
        last_reward.scatter_(dim=1, index=eos_indices, src=rlhf_reward.reshape(-1, 1))

        # Test last_reward - should have rlhf_reward at the last non-padded position
        for i, (length, reward) in enumerate(zip(sequence_lengths, rlhf_reward)):
            # Check reward is at correct position
            self.assertEqual(last_reward[i, length - 1].item(), reward.item())
            # Check zeros elsewhere
            self.assertTrue(torch.all(last_reward[i, : length - 1] == 0))
            self.assertTrue(torch.all(last_reward[i, length:] == 0))

        # Combine rewards
        reward = last_reward + kl_reward
        non_score_reward = kl_reward.sum(1)
        token_level_rlhf_reward = reward.sum(1)

        # Test reward components
        # KL reward should be -0.1 for each token in sequence length
        expected_kl_reward = -0.1 * sequence_length  # Each position gets -0.1 KL reward
        torch.testing.assert_close(non_score_reward, torch.tensor(expected_kl_reward).expand_as(non_score_reward))

        # Total reward should be rlhf_reward + kl_reward
        expected_total = rlhf_reward + expected_kl_reward
        torch.testing.assert_close(token_level_rlhf_reward, expected_total)

        # Test sequence-level rewards (existing test)
        baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
        advantages = torch.zeros_like(rlhf_reward)
        for i in range(0, len(advantages), local_batch_size):
            other_response_rlhf_rewards = []
            for j in range(0, len(advantages), local_batch_size):
                if i != j:
                    other_response_rlhf_rewards.append(rlhf_reward[j : j + local_batch_size])
            advantages[i : i + local_batch_size] = rlhf_reward[i : i + local_batch_size] - torch.stack(
                other_response_rlhf_rewards
            ).mean(0)
        self.assertLess((1 - (2 + 5 + 8) / 3 - advantages[0].item()), 1e-6)
        self.assertLess((6 - (3 + 2 + 9) / 3 - advantages[7].item()), 1e-6)

        # Test vectorized implementation
        rlhf_reward = rlhf_reward.reshape(rloo_k, local_batch_size)
        baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
        vec_advantages = rlhf_reward - baseline
        torch.testing.assert_close(vec_advantages.flatten(), advantages)

    def test_rloo_training(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = RLOOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                per_device_eval_batch_size=2,
                total_episodes=1,
                num_train_epochs=1,
                max_steps=2,
                report_to="none",
            )

            # Create a simple dataset
            dummy_text = [{"content": "Hello World!", "role": "user"}]
            dummy_data = self.tokenizer.apply_chat_template(dummy_text)
            dummy_dataset = Dataset.from_dict({"input_ids": [dummy_data, dummy_data]})

            trainer = RLOOTrainer(
                config=training_args,
                policy=self.policy_model,
                reward_model=self.reward_model,
                ref_policy=self.policy_ref_model,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset,
                eval_dataset=dummy_dataset,
            )

            # Test that training completes without errors
            trainer.train()

            # Check if objective/rlhf_reward is available
            self.assertIn("objective/rlhf_reward", trainer.state.log_history[-1])

    def test_rloo_training_with_custom_reward(self):
        # dummy reward function
        def reward_function(texts):
            # based on length of text
            rewards = [len(text) for text in texts]
            return rewards

        with tempfile.TemporaryDirectory() as tmp_dir:
            training_args = RLOOConfig(
                output_dir=tmp_dir,
                per_device_train_batch_size=2,
                per_device_eval_batch_size=2,
                total_episodes=1,
                num_train_epochs=1,
                max_steps=2,
                report_to="none",
            )

            # Create a simple dataset
            dummy_text = [{"content": "Hello World!", "role": "user"}]
            dummy_data = self.tokenizer.apply_chat_template(dummy_text)
            dummy_dataset = Dataset.from_dict({"input_ids": [dummy_data, dummy_data]})

            trainer = RLOOTrainer(
                config=training_args,
                policy=self.policy_model,
                reward_model=reward_function,
                ref_policy=self.policy_ref_model,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset,
                eval_dataset=dummy_dataset,
            )

            # Test that training completes without errors
            trainer.train()

            # Check if objective/rlhf_reward is available
            self.assertIn("objective/rlhf_reward", trainer.state.log_history[-1])