File size: 15,360 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest
from unittest.mock import MagicMock

import torch
from datasets import Dataset, load_dataset
from parameterized import parameterized
from transformers import AutoModelForTokenClassification, AutoTokenizer, PreTrainedTokenizerBase
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available

from trl import PRMConfig, PRMTrainer


if is_peft_available():
    from peft import LoraConfig, TaskType


class TestTokenizeRow(unittest.TestCase):
    def setUp(self):
        # Set up the mock tokenizer with specific behaviors
        self.tokenizer = MagicMock(spec=PreTrainedTokenizerBase)
        self.tokenizer.bos_token_id = 0
        self.tokenizer.eos_token_id = 2

        def mock_encode(text, add_special_tokens):
            token_map = {
                "Which number is larger, 9.8 or 9.11?": [465, 6766, 318, 298],
                "11 is greater than 8.": [4, 322, 12],
                "Hence, 9.11 > 9.8.": [4995, 11, 22],
                "\n": [1030],
                "\n\n": [1030, 1030],
            }

            return token_map[text]

        def mock_tokenizer_call(text, add_special_tokens):
            return {"input_ids": mock_encode(text, add_special_tokens)}

        self.tokenizer.encode.side_effect = mock_encode
        self.tokenizer.side_effect = mock_tokenizer_call

    def test_tokenize_row_no_truncation(self):
        # Define the input features
        features = {
            "prompt": "Which number is larger, 9.8 or 9.11?",
            "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
            "labels": [True, False],
        }

        # Call the method with no truncation
        result = PRMTrainer.tokenize_row(
            features=features,
            tokenizer=self.tokenizer,
            step_separator="\n",
            max_length=None,
            max_prompt_length=None,
            max_completion_length=None,
            train_on_last_step_only=False,
            is_eval=False,
        )

        self.assertEqual(
            result,
            {
                "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
                "labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0],
            },
        )

    def test_tokenize_row_train_on_last_step_only(self):
        # Define the input features
        features = {
            "prompt": "Which number is larger, 9.8 or 9.11?",
            "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
            "labels": [True, False],
        }

        result = PRMTrainer.tokenize_row(
            features=features,
            tokenizer=self.tokenizer,
            step_separator="\n",
            max_length=None,
            max_prompt_length=None,
            max_completion_length=None,
            train_on_last_step_only=True,
            is_eval=False,
        )

        self.assertEqual(
            result,
            {
                "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
                "labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
            },
        )

    def test_tokenize_row_prompt_truncation(self):
        # Define the input features
        features = {
            "prompt": "Which number is larger, 9.8 or 9.11?",
            "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
            "labels": [True, False],
        }

        # Call the method with truncation on the completion
        result = PRMTrainer.tokenize_row(
            features=features,
            tokenizer=self.tokenizer,
            step_separator="\n",
            max_length=None,
            max_prompt_length=3,
            max_completion_length=None,
            train_on_last_step_only=False,
            is_eval=False,
        )

        self.assertEqual(
            result,
            {
                "input_ids": [6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
                "labels": [-100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0],
            },
        )

    def test_tokenize_row_completion_truncation(self):
        # Define the input features
        features = {
            "prompt": "Which number is larger, 9.8 or 9.11?",
            "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
            "labels": [True, False],
        }

        # Call the method with truncation on the completion
        result = PRMTrainer.tokenize_row(
            features=features,
            tokenizer=self.tokenizer,
            step_separator="\n",
            max_length=None,
            max_prompt_length=None,
            max_completion_length=6,
            train_on_last_step_only=False,
            is_eval=False,
        )

        self.assertEqual(
            result,
            {
                "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11],
                "labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100],
            },
        )

    def test_tokenize_row_prompt_completion_truncation(self):
        # Define the input features
        features = {
            "prompt": "Which number is larger, 9.8 or 9.11?",
            "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
            "labels": [True, False],
        }

        # Call the method with truncation on the prompt and completion
        result = PRMTrainer.tokenize_row(
            features=features,
            tokenizer=self.tokenizer,
            step_separator="\n",
            max_length=9,
            max_prompt_length=None,
            max_completion_length=None,
            train_on_last_step_only=False,
            is_eval=False,
        )

        self.assertEqual(
            result,
            {
                "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030],
                "labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1],
            },
        )

    def test_tokenize_row_multi_token_separator(self):
        # Define the input features
        features = {
            "prompt": "Which number is larger, 9.8 or 9.11?",
            "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
            "labels": [True, False],
        }

        # Call the method using multiple tokens as step_separator
        result = PRMTrainer.tokenize_row(
            features=features,
            tokenizer=self.tokenizer,
            step_separator="\n\n",
            max_length=None,
            max_prompt_length=None,
            max_completion_length=None,
            train_on_last_step_only=False,
            is_eval=False,
        )

        self.assertEqual(
            result,
            {
                "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 1030, 4995, 11, 22, 1030, 1030],
                "labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, 0],
            },
        )


class PRMTrainerTester(unittest.TestCase):
    def setUp(self):
        model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
        self.model = AutoModelForTokenClassification.from_pretrained(model_id)
        self.tokenizer = AutoTokenizer.from_pretrained(model_id)

    @parameterized.expand([True, False])
    def test_train_full(self, train_on_last_step_only):
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
            training_args = PRMConfig(
                output_dir=tmp_dir,
                report_to="none",
                train_on_last_step_only=train_on_last_step_only,
            )
            trainer = PRMTrainer(
                model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
            )
            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if param.sum() != 0:  # ignore 0 biases
                    self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))

    def test_train_full_pretokenized(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = Dataset.from_dict(
                {
                    "labels": [
                        [-100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1],
                        [-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1, -100, -100, -100, -100, 0],
                        [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1],
                        [-100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 1],
                        [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 0],
                        [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1],
                        [-100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
                        [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, -100, 0],
                        [-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 0],
                        [-100, -100, -100, -100, -100, -100, 0, -100, -100, -100, -100, 0],
                        [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 1],
                        [-100, -100, -100, -100, -100, -100, 0],
                        [-100, -100, -100, -100, -100, -100, -100, -100, 1],
                        [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
                    ],
                    "input_ids": [
                        [46518, 374, 2664, 1091, 11, 1077, 752, 1744, 1112, 198, 27261, 13, 198],
                        [98923, 374, 2664, 1091, 11, 315, 3308, 11, 198, 17995, 13, 198, 1576, 31273, 12850, 13, 198],
                        [16374, 374, 2664, 1091, 1112, 1077, 594, 2506, 432, 6770, 11, 198, 6351, 13, 198],
                        [31137, 374, 2664, 1091, 979, 4362, 11, 198, 16965, 13, 198],
                        [31019, 374, 2664, 1091, 304, 3793, 315, 5944, 11, 198, 24034, 13, 198],
                        [98491, 374, 2664, 1091, 1112, 5310, 369, 91494, 13, 198],
                        [4418, 2897, 14579, 5310, 979, 3800, 1349, 432, 13, 198],
                        [20366, 5048, 7629, 944, 3281, 3322, 11, 7241, 1112, 198, 807, 1795, 279, 5601, 13, 198],
                        [15802, 14976, 487, 33327, 1045, 31787, 63443, 11, 198, 52400, 13, 198],
                        [13877, 1265, 2581, 1494, 49394, 11, 198, 7241, 20975, 91681, 13, 198],
                        [641, 279, 3579, 315, 71768, 11, 25066, 279, 61361, 311, 7942, 13, 198],
                        [7039, 374, 2664, 1091, 2937, 13, 198],
                        [26155, 374, 3545, 2664, 1091, 34933, 26537, 13, 198],
                        [2679, 279, 8129, 374, 4135, 311, 10339, 11, 432, 2578, 387, 264, 1661, 2884, 13, 198],
                    ],
                }
            )

            training_args = PRMConfig(output_dir=tmp_dir, report_to="none")
            trainer = PRMTrainer(
                model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
            )

            previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                if param.sum() != 0:  # ignore 0 biases
                    self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))

    @require_peft
    def test_train_lora(self):
        peft_config = LoraConfig(
            task_type=TaskType.TOKEN_CLS,
            inference_mode=False,
            r=8,
            lora_alpha=32,
            lora_dropout=0.1,
        )
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
            training_args = PRMConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
            trainer = PRMTrainer(
                model=self.model,
                args=training_args,
                processing_class=self.tokenizer,
                train_dataset=dummy_dataset,
                peft_config=peft_config,
            )
            previous_trainable_params = {}
            previous_non_trainable_params = {}

            # due to a change in the way the modules to save are dealt in PEFT.
            trainable_params_name = ["lora", "modules_to_save"]

            # check gradients are not None
            for n, param in trainer.model.named_parameters():
                if any(t in n for t in trainable_params_name):
                    previous_trainable_params[n] = param.clone()
                else:
                    previous_non_trainable_params[n] = param.clone()

            trainer.train()

            self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])

            # Check that the parameters have changed
            for n, param in previous_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))

            # Check that the non trainable parameters have not changed
            for n, param in previous_non_trainable_params.items():
                new_param = trainer.model.get_parameter(n)
                self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))

    def test_tags(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
            training_args = PRMConfig(output_dir=tmp_dir, report_to="none")
            trainer = PRMTrainer(
                model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
            )
            self.assertEqual(trainer.model.model_tags, trainer._tag_names)