Spaces:
Paused
Paused
File size: 15,360 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from unittest.mock import MagicMock
import torch
from datasets import Dataset, load_dataset
from parameterized import parameterized
from transformers import AutoModelForTokenClassification, AutoTokenizer, PreTrainedTokenizerBase
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available
from trl import PRMConfig, PRMTrainer
if is_peft_available():
from peft import LoraConfig, TaskType
class TestTokenizeRow(unittest.TestCase):
def setUp(self):
# Set up the mock tokenizer with specific behaviors
self.tokenizer = MagicMock(spec=PreTrainedTokenizerBase)
self.tokenizer.bos_token_id = 0
self.tokenizer.eos_token_id = 2
def mock_encode(text, add_special_tokens):
token_map = {
"Which number is larger, 9.8 or 9.11?": [465, 6766, 318, 298],
"11 is greater than 8.": [4, 322, 12],
"Hence, 9.11 > 9.8.": [4995, 11, 22],
"\n": [1030],
"\n\n": [1030, 1030],
}
return token_map[text]
def mock_tokenizer_call(text, add_special_tokens):
return {"input_ids": mock_encode(text, add_special_tokens)}
self.tokenizer.encode.side_effect = mock_encode
self.tokenizer.side_effect = mock_tokenizer_call
def test_tokenize_row_no_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with no truncation
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0],
},
)
def test_tokenize_row_train_on_last_step_only(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=True,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
},
)
def test_tokenize_row_prompt_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=3,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030],
"labels": [-100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0],
},
)
def test_tokenize_row_completion_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=None,
max_prompt_length=None,
max_completion_length=6,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100],
},
)
def test_tokenize_row_prompt_completion_truncation(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method with truncation on the prompt and completion
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n",
max_length=9,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1],
},
)
def test_tokenize_row_multi_token_separator(self):
# Define the input features
features = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."],
"labels": [True, False],
}
# Call the method using multiple tokens as step_separator
result = PRMTrainer.tokenize_row(
features=features,
tokenizer=self.tokenizer,
step_separator="\n\n",
max_length=None,
max_prompt_length=None,
max_completion_length=None,
train_on_last_step_only=False,
is_eval=False,
)
self.assertEqual(
result,
{
"input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 1030, 4995, 11, 22, 1030, 1030],
"labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, 0],
},
)
class PRMTrainerTester(unittest.TestCase):
def setUp(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.model = AutoModelForTokenClassification.from_pretrained(model_id)
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
@parameterized.expand([True, False])
def test_train_full(self, train_on_last_step_only):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(
output_dir=tmp_dir,
report_to="none",
train_on_last_step_only=train_on_last_step_only,
)
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
def test_train_full_pretokenized(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = Dataset.from_dict(
{
"labels": [
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, 0, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, 0],
[-100, -100, -100, -100, -100, -100, -100, -100, 1],
[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0],
],
"input_ids": [
[46518, 374, 2664, 1091, 11, 1077, 752, 1744, 1112, 198, 27261, 13, 198],
[98923, 374, 2664, 1091, 11, 315, 3308, 11, 198, 17995, 13, 198, 1576, 31273, 12850, 13, 198],
[16374, 374, 2664, 1091, 1112, 1077, 594, 2506, 432, 6770, 11, 198, 6351, 13, 198],
[31137, 374, 2664, 1091, 979, 4362, 11, 198, 16965, 13, 198],
[31019, 374, 2664, 1091, 304, 3793, 315, 5944, 11, 198, 24034, 13, 198],
[98491, 374, 2664, 1091, 1112, 5310, 369, 91494, 13, 198],
[4418, 2897, 14579, 5310, 979, 3800, 1349, 432, 13, 198],
[20366, 5048, 7629, 944, 3281, 3322, 11, 7241, 1112, 198, 807, 1795, 279, 5601, 13, 198],
[15802, 14976, 487, 33327, 1045, 31787, 63443, 11, 198, 52400, 13, 198],
[13877, 1265, 2581, 1494, 49394, 11, 198, 7241, 20975, 91681, 13, 198],
[641, 279, 3579, 315, 71768, 11, 25066, 279, 61361, 311, 7942, 13, 198],
[7039, 374, 2664, 1091, 2937, 13, 198],
[26155, 374, 3545, 2664, 1091, 34933, 26537, 13, 198],
[2679, 279, 8129, 374, 4135, 311, 10339, 11, 432, 2578, 387, 264, 1661, 2884, 13, 198],
],
}
)
training_args = PRMConfig(output_dir=tmp_dir, report_to="none")
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
@require_peft
def test_train_lora(self):
peft_config = LoraConfig(
task_type=TaskType.TOKEN_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(output_dir=tmp_dir, max_steps=3, report_to="none")
trainer = PRMTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset,
peft_config=peft_config,
)
previous_trainable_params = {}
previous_non_trainable_params = {}
# due to a change in the way the modules to save are dealt in PEFT.
trainable_params_name = ["lora", "modules_to_save"]
# check gradients are not None
for n, param in trainer.model.named_parameters():
if any(t in n for t in trainable_params_name):
previous_trainable_params[n] = param.clone()
else:
previous_non_trainable_params[n] = param.clone()
trainer.train()
self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
# Check that the non trainable parameters have not changed
for n, param in previous_non_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12))
def test_tags(self):
with tempfile.TemporaryDirectory() as tmp_dir:
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train")
training_args = PRMConfig(output_dir=tmp_dir, report_to="none")
trainer = PRMTrainer(
model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset
)
self.assertEqual(trainer.model.model_tags, trainer._tag_names)
|