Spaces:
Paused
Paused
File size: 8,321 Bytes
2f5127c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example usage:
accelerate launch \
--config_file=deepspeed_zero2.yaml \
sft_video_llm.py \
--dataset_name=mfarre/simplevideoshorts \
--video_cache_dir="/optional/path/to/cache/" \
--model_name_or_path=Qwen/Qwen2-VL-7B-Instruct \
--per_device_train_batch_size=1 \
--output_dir=video-llm-output \
--bf16=True \
--tf32=True \
--gradient_accumulation_steps=4 \
--num_train_epochs=4 \
--optim="adamw_torch_fused" \
--logging_steps=1 \
--log_level="debug" \
--log_level_replica="debug" \
--save_strategy="steps" \
--save_steps=300 \
--learning_rate=8e-5 \
--max_grad_norm=0.3 \
--warmup_ratio=0.1 \
--lr_scheduler_type="cosine" \
--report_to="wandb" \
--push_to_hub=False \
--torch_dtype=bfloat16 \
--gradient_checkpointing=True
"""
import json
import os
import random
from dataclasses import dataclass, field
from typing import Any
import requests
import torch
import wandb
from datasets import load_dataset
from peft import LoraConfig
from qwen_vl_utils import process_vision_info
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig, Qwen2VLProcessor
from trl import ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_kbit_device_map
def download_video(url: str, cache_dir: str) -> str:
"""Download video if not already present locally."""
os.makedirs(cache_dir, exist_ok=True) # Create cache dir if it doesn't exist
filename = url.split("/")[-1]
local_path = os.path.join(cache_dir, filename)
if os.path.exists(local_path):
return local_path
try:
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(local_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
return local_path
except requests.RequestException as e:
raise Exception(f"Failed to download video: {e}") from e
def prepare_dataset(example: dict[str, Any], cache_dir: str) -> dict[str, list[dict[str, Any]]]:
"""Prepare dataset example for training."""
video_url = example["video_url"]
timecoded_cc = example["timecoded_cc"]
qa_pairs = json.loads(example["qa"])
system_message = "You are an expert in movie narrative analysis."
base_prompt = f"""Analyze the video and consider the following timecoded subtitles:
{timecoded_cc}
Based on this information, please answer the following questions:"""
selected_qa = random.sample(qa_pairs, 1)[0]
messages = [
{"role": "system", "content": [{"type": "text", "text": system_message}]},
{
"role": "user",
"content": [
{"type": "video", "video": download_video(video_url, cache_dir), "max_pixels": 360 * 420, "fps": 1.0},
{"type": "text", "text": f"{base_prompt}\n\nQuestion: {selected_qa['question']}"},
],
},
{"role": "assistant", "content": [{"type": "text", "text": selected_qa["answer"]}]},
]
return {"messages": messages}
def collate_fn(examples: list[dict[str, Any]]) -> dict[str, torch.Tensor]:
"""Collate batch of examples for training."""
texts = []
video_inputs = []
for i, example in enumerate(examples):
try:
video_path = next(
content["video"]
for message in example["messages"]
for content in message["content"]
if content.get("type") == "video"
)
print(f"Processing video: {os.path.basename(video_path)}")
texts.append(processor.apply_chat_template(example["messages"], tokenize=False))
video_input = process_vision_info(example["messages"])[1][0]
video_inputs.append(video_input)
except Exception as e:
raise ValueError(f"Failed to process example {i}: {e}") from e
inputs = processor(text=texts, videos=video_inputs, return_tensors="pt", padding=True)
labels = inputs["input_ids"].clone()
labels[labels == processor.tokenizer.pad_token_id] = -100
# Handle visual tokens based on processor type
visual_tokens = (
[151652, 151653, 151656]
if isinstance(processor, Qwen2VLProcessor)
else [processor.tokenizer.convert_tokens_to_ids(processor.image_token)]
)
for visual_token_id in visual_tokens:
labels[labels == visual_token_id] = -100
inputs["labels"] = labels
return inputs
@dataclass
class CustomScriptArguments(ScriptArguments):
r"""
Arguments for the script.
Args:
video_cache_dir (`str`, *optional*, defaults to `"/tmp/videos/"`):
Video cache directory.
"""
video_cache_dir: str = field(default="/tmp/videos/", metadata={"help": "Video cache directory."})
if __name__ == "__main__":
# Parse arguments
parser = TrlParser((CustomScriptArguments, SFTConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
# Configure training args
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
# Load dataset
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config, split="train")
# Setup model
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
# Quantization configuration for 4-bit training
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Model initialization
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map(),
quantization_config=bnb_config,
)
model = AutoModelForVision2Seq.from_pretrained(model_args.model_name_or_path, **model_kwargs)
peft_config = LoraConfig(
task_type="CAUSAL_LM",
r=16,
lora_alpha=16,
lora_dropout=0.1,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
# Configure model modules for gradients
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
model.config.use_reentrant = False
model.enable_input_require_grads()
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
# Prepare dataset
prepared_dataset = [prepare_dataset(example, script_args.video_cache_dir) for example in dataset]
# Initialize wandb if specified
if training_args.report_to == "wandb":
wandb.init(project="video-llm-training")
# Initialize trainer
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=prepared_dataset,
data_collator=collate_fn,
peft_config=peft_config,
tokenizer=processor.tokenizer,
)
# Train model
trainer.train()
# Save final model
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
if trainer.accelerator.is_main_process:
processor.push_to_hub(training_args.hub_model_id)
# Cleanup
del model
del trainer
torch.cuda.empty_cache()
wandb.finish()
|