File size: 5,993 Bytes
2f5127c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import shutil

import torch
from accelerate import PartialState
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    HfArgumentParser,
)

from trl import (
    ModelConfig,
    PPOConfig,
    PPOTrainer,
    ScriptArguments,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE


"""
python -i examples/scripts/ppo/ppo.py \
    --dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
    --dataset_train_split descriptiveness \
    --learning_rate 3e-6 \
    --output_dir models/minimal/ppo \
    --per_device_train_batch_size 64 \
    --gradient_accumulation_steps 1 \
    --total_episodes 10000 \
    --model_name_or_path EleutherAI/pythia-1b-deduped \
    --missing_eos_penalty 1.0

accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml \
    examples/scripts/ppo/ppo.py \
    --dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
    --dataset_train_split descriptiveness \
    --output_dir models/minimal/ppo \
    --num_ppo_epochs 1 \
    --num_mini_batches 1 \
    --learning_rate 3e-6 \
    --per_device_train_batch_size 1 \
    --gradient_accumulation_steps 16 \
    --total_episodes 10000 \
    --model_name_or_path EleutherAI/pythia-1b-deduped \
    --sft_model_path EleutherAI/pythia-1b-deduped \
    --reward_model_path EleutherAI/pythia-1b-deduped \
    --local_rollout_forward_batch_size 1 \
    --missing_eos_penalty 1.0
"""


if __name__ == "__main__":
    parser = HfArgumentParser((ScriptArguments, PPOConfig, ModelConfig))
    script_args, training_args, model_args = parser.parse_args_into_dataclasses()
    # remove output_dir if exists
    shutil.rmtree(training_args.output_dir, ignore_errors=True)

    ################
    # Model & Tokenizer
    ################
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)
    model_kwargs = dict(
        revision=model_args.model_revision,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.model_name_or_path, padding_side="left", trust_remote_code=model_args.trust_remote_code
    )
    tokenizer.add_special_tokens({"pad_token": "[PAD]"})
    if tokenizer.chat_template is None:
        tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
    value_model = AutoModelForSequenceClassification.from_pretrained(
        training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
    )
    reward_model = AutoModelForSequenceClassification.from_pretrained(
        training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
    )
    policy = AutoModelForCausalLM.from_pretrained(
        training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code
    )

    peft_config = get_peft_config(model_args)
    if peft_config is None:
        ref_policy = AutoModelForCausalLM.from_pretrained(
            training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code
        )
    else:
        ref_policy = None

    ################
    # Dataset
    ################
    dataset = load_dataset(
        script_args.dataset_name, name=script_args.dataset_config, split=script_args.dataset_train_split
    )
    eval_samples = 100
    train_dataset = dataset.select(range(len(dataset) - eval_samples))
    eval_dataset = dataset.select(range(len(dataset) - eval_samples, len(dataset)))
    dataset_text_field = "prompt"

    def prepare_dataset(dataset, tokenizer):
        """pre-tokenize the dataset before training; only collate during training"""

        def tokenize(element):
            outputs = tokenizer(
                element[dataset_text_field],
                padding=False,
            )
            return {"input_ids": outputs["input_ids"]}

        return dataset.map(
            tokenize,
            batched=True,
            remove_columns=dataset.column_names,
            num_proc=training_args.dataset_num_proc,
        )

    # Compute that only on the main process for faster data processing.
    # see: https://github.com/huggingface/trl/pull/1255
    with PartialState().local_main_process_first():
        train_dataset = prepare_dataset(train_dataset, tokenizer)
        eval_dataset = prepare_dataset(eval_dataset, tokenizer)

    ################
    # Training
    ################
    trainer = PPOTrainer(
        args=training_args,
        processing_class=tokenizer,
        model=policy,
        ref_model=ref_policy,
        reward_model=reward_model,
        value_model=value_model,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        peft_config=peft_config,
    )
    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)

    trainer.generate_completions()