File size: 742 Bytes
0286f38 088c659 0286f38 2f39413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
import pandas as pd
import gradio as gr
from Search_Engine.SmartSearchEngine import search_courses
# Load the DataFrame with embeddings
df = pd.read_pickle('output/courses_with_embeddings.pkl')
# Define the search function to be used in the Gradio interface
def gradio_search(query):
results = search_courses(query, top_n=5)
return results.to_dict(orient='records')
# Create a Gradio interface
iface = gr.Interface(
fn=gradio_search,
inputs=gr.Textbox(lines=2, placeholder="Enter your search query here..."),
outputs=gr.JSON(label="Search Results"),
title="Smart Course Search Tool",
description="Search for the most relevant courses on Analytics Vidhya"
)
# Launch the Gradio interface
iface.launch(share=True) |