File size: 32,856 Bytes
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562a582
 
 
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04a2b6
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0a051
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
 
bc0a051
 
 
 
 
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562a582
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c5c02
6747ba1
 
 
562a582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
d2c5c02
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c5c02
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04a2b6
 
 
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92e85a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
import gradio as gr
from huggingface_hub import InferenceClient
import matplotlib.pyplot as plt
from PIL import Image
from rdkit.Chem import Descriptors, QED, Draw
from rdkit.Chem.Crippen import MolLogP
import pandas as pd
from rdkit.Contrib.SA_Score import sascorer
from rdkit.Chem import DataStructs, AllChem
from transformers import BartForConditionalGeneration, AutoTokenizer, AutoModel
from transformers.modeling_outputs import BaseModelOutput
import selfies as sf
from rdkit import Chem
import torch
import numpy as np
import umap
import pickle
import xgboost as xgb
from sklearn.svm import SVR
from sklearn.linear_model import LinearRegression
from sklearn.kernel_ridge import KernelRidge
import json

import os

os.environ["OMP_MAX_ACTIVE_LEVELS"] = "1"

# my_theme = gr.Theme.from_hub("ysharma/steampunk")
# my_theme = gr.themes.Glass()

"""
# カスタムテーマ設定
theme = gr.themes.Default().set(
    body_background_fill="#000000",  # 背景色を黒に設定
    text_color="#FFFFFF",            # テキスト色を白に設定
)
"""
"""
import sys
sys.path.append("models")
sys.path.append("../models")
sys.path.append("../")"""


# Get the current file's directory
base_dir = os.path.dirname(__file__)
print("Base Dir : ", base_dir)

import models.fm4m as fm4m
import re
from rdkit import RDLogger
RDLogger.logger().setLevel(RDLogger.ERROR)


# Function to display molecule image from SMILES
def smiles_to_image(smiles):
    mol = Chem.MolFromSmiles(smiles)
    if mol:
        img = Draw.MolToImage(mol)
        return img
    return None


# Function to get canonical SMILES
def get_canonical_smiles(smiles):
    mol = Chem.MolFromSmiles(smiles)
    if mol:
        return Chem.MolToSmiles(mol, canonical=True)
    return None


# Dictionary for SMILES strings and corresponding images (you can replace with your actual image paths)
smiles_image_mapping = {
    "Mol 1": {"smiles": "C=C(C)CC(=O)NC[C@H](CO)NC(=O)C=Cc1ccc(C)c(Cl)c1", "image": "img/img1.png"},
    # Example SMILES for ethanol
    "Mol 2": {"smiles": "C=CC1(CC(=O)NC[C@@H](CCCC)NC(=O)c2cc(Cl)cc(Br)c2)CC1", "image": "img/img2.png"},
    # Example SMILES for butane
    "Mol 3": {"smiles": "C=C(C)C[C@H](NC(C)=O)C(=O)N1CC[C@H](NC(=O)[C@H]2C[C@@]2(C)Br)C(C)(C)C1",
              "image": "img/img3.png"},  # Example SMILES for ethylamine
    "Mol 4": {"smiles": "C=C1CC(CC(=O)N[C@H]2CCN(C(=O)c3ncccc3SC)C23CC3)C1", "image": "img/img4.png"},
    # Example SMILES for diethyl ether
    "Mol 5": {"smiles": "C=CCS[C@@H](C)CC(=O)OCC", "image": "img/img5.png"}  # Example SMILES for chloroethane
}

datasets = [" ", "BACE", "ESOL", "Load Custom Dataset"]

models_enabled = ["SELFIES-TED", "MHG-GED", "MolFormer", "SMI-TED"]

fusion_available = ["Concat"]

global log_df
log_df = pd.DataFrame(columns=["Selected Models", "Dataset", "Task", "Result"])


def log_selection(models, dataset, task_type, result, log_df):
    # Append the new entry to the DataFrame
    new_entry = {"Selected Models": str(models), "Dataset": dataset, "Task": task_type, "Result": result}
    updated_log_df = log_df.append(new_entry, ignore_index=True)
    return updated_log_df


# Function to handle evaluation and logging
def save_rep(models, dataset, task_type, eval_output):
    return
def evaluate_and_log(models, dataset, task_type, eval_output):
    task_dic = {'Classification': 'CLS', 'Regression': 'RGR'}
    result = f"{eval_output}"#display_eval(models, dataset, task_type, fusion_type=None)
    result = result.replace(" Score", "")

    new_entry = {"Selected Models": str(models), "Dataset": dataset, "Task": task_dic[task_type], "Result": result}
    new_entry_df = pd.DataFrame([new_entry])

    log_df = pd.read_csv('log.csv', index_col=0)
    log_df = pd.concat([new_entry_df, log_df])

    log_df.to_csv('log.csv')

    return log_df


try:
    log_df = pd.read_csv('log.csv', index_col=0)
except:
    log_df = pd.DataFrame({"":[],
    'Selected Models': [],
    'Dataset': [],
    'Task': [],
    'Result': []
        })
    csv_file_path = 'log.csv'
    log_df.to_csv(csv_file_path, index=False)


# Load images for selection
def load_image(path):
    try:
        return Image.open(smiles_image_mapping[path]["image"])# Image.1open(path)
    except:
        pass



# Function to handle image selection
def handle_image_selection(image_key):
    smiles = smiles_image_mapping[image_key]["smiles"]
    mol_image = smiles_to_image(smiles)
    return smiles, mol_image


def calculate_properties(smiles):
    mol = Chem.MolFromSmiles(smiles)
    if mol:
        qed = QED.qed(mol)
        logp = MolLogP(mol)
        sa = sascorer.calculateScore(mol)
        wt = Descriptors.MolWt(mol)
        return qed, sa, logp, wt
    return None, None, None, None


# Function to calculate Tanimoto similarity
def calculate_tanimoto(smiles1, smiles2):
    mol1 = Chem.MolFromSmiles(smiles1)
    mol2 = Chem.MolFromSmiles(smiles2)
    if mol1 and mol2:
        # fp1 = FingerprintMols.FingerprintMol(mol1)
        # fp2 = FingerprintMols.FingerprintMol(mol2)
        fp1 = AllChem.GetMorganFingerprintAsBitVect(mol1, 2)
        fp2 = AllChem.GetMorganFingerprintAsBitVect(mol2, 2)
        return round(DataStructs.FingerprintSimilarity(fp1, fp2), 2)
    return None


#with open("models/selfies_model/bart-2908.pickle", "rb") as input_file:
#    gen_model, gen_tokenizer = pickle.load(input_file)

gen_tokenizer = AutoTokenizer.from_pretrained("ibm/materials.selfies-ted")
gen_model = BartForConditionalGeneration.from_pretrained("ibm/materials.selfies-ted")


def generate(latent_vector, mask):
    encoder_outputs = BaseModelOutput(latent_vector)
    decoder_output = gen_model.generate(encoder_outputs=encoder_outputs, attention_mask=mask,
                                        max_new_tokens=64, do_sample=True, top_k=5, top_p=0.95, num_return_sequences=1)
    selfies = gen_tokenizer.batch_decode(decoder_output, skip_special_tokens=True)
    outs = []
    for i in selfies:
        outs.append(sf.decoder(re.sub(r'\]\s*(.*?)\s*\[', r']\1[', i)))
    return outs


def perturb_latent(latent_vecs, noise_scale=0.5):
    modified_vec = torch.tensor(np.random.uniform(0, 1, latent_vecs.shape) * noise_scale,
                                dtype=torch.float32) + latent_vecs
    return modified_vec


def encode(selfies):
    encoding = gen_tokenizer(selfies, return_tensors='pt', max_length=128, truncation=True, padding='max_length')
    input_ids = encoding['input_ids']
    attention_mask = encoding['attention_mask']
    outputs = gen_model.model.encoder(input_ids=input_ids, attention_mask=attention_mask)
    model_output = outputs.last_hidden_state

    """input_mask_expanded = attention_mask.unsqueeze(-1).expand(model_output.size()).float()
    sum_embeddings = torch.sum(model_output * input_mask_expanded, 1)
    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
    model_output = sum_embeddings / sum_mask"""
    return model_output, attention_mask


# Function to generate canonical SMILES and molecule image
def generate_canonical(smiles):
    s = sf.encoder(smiles)
    selfie = s.replace("][", "] [")
    latent_vec, mask = encode([selfie])
    gen_mol = None
    for i in range(5, 51):
        print("Searching Latent space")
        noise = i / 10
        perturbed_latent = perturb_latent(latent_vec, noise_scale=noise)
        gen = generate(perturbed_latent, mask)
        mol = Chem.MolFromSmiles(gen[0])
        if mol:
            gen_mol = Chem.MolToSmiles(mol)
            if gen_mol != Chem.MolToSmiles(Chem.MolFromSmiles(smiles)): break
        else:
            print('Abnormal molecule:', gen[0])
            gen_mols = []
            for sel in gen[0].split('.'):
                mol = Chem.MolFromSmiles(sel)
                if mol:
                    mol = Chem.MolToSmiles(mol)
                    if mol != Chem.MolToSmiles(Chem.MolFromSmiles(smiles)):
                        gen_mols.append(mol)
            if len(gen_mols) > 0:
                gen_mol = '.'.join(gen_mols)
                break

    if gen_mol:
        # Calculate properties for ref and gen molecules
        print("calculating properties")
        ref_properties = calculate_properties(smiles)
        gen_properties = calculate_properties(gen_mol)
        tanimoto_similarity = calculate_tanimoto(smiles, gen_mol)

        # Prepare the table with ref mol and gen mol
        data = {
            "Property": ["QED", "SA", "LogP", "Mol Wt", "Tanimoto Similarity"],
            "Reference Mol": [ref_properties[0], ref_properties[1], ref_properties[2], ref_properties[3],
                              tanimoto_similarity],
            "Generated Mol": [gen_properties[0], gen_properties[1], gen_properties[2], gen_properties[3], ""]
        }
        df = pd.DataFrame(data)

        # Display molecule image of canonical smiles
        print("Getting image")
        mol_image = smiles_to_image(gen_mol)

        return df, gen_mol, mol_image
    return "Invalid SMILES", None, None


# Function to display evaluation score
def display_eval(selected_models, dataset, task_type, downstream, fusion_type):
    result = None

    try:
        downstream_model = downstream.split("*")[0].lstrip()
        downstream_model = downstream_model.rstrip()
        hyp_param = downstream.split("*")[-1].lstrip()
        hyp_param = hyp_param.rstrip()
        hyp_param = hyp_param.replace("nan", "float('nan')")
        params = eval(hyp_param)
    except:
        downstream_model = downstream.split("*")[0].lstrip()
        downstream_model = downstream_model.rstrip()
        params = None




    try:
        if not selected_models:
            return "Please select at least one enabled model."

        if task_type == "Classification":
            global roc_auc, fpr, tpr, x_batch, y_batch
        elif task_type == "Regression":
            global RMSE, y_batch_test, y_prob

        if len(selected_models) > 1:
            if task_type == "Classification":
                #result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models,
                #                                                               downstream_model="XGBClassifier",
                #                                                               dataset=dataset.lower())
                if downstream_model == "Default Settings":
                    downstream_model = "DefaultClassifier"
                    params = None
                result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models,
                                                                                               downstream_model=downstream_model,
                                                                                               params = params,
                                                                                               dataset=dataset)

            elif task_type == "Regression":
                #result, RMSE, y_batch_test, y_prob = fm4m.multi_modal(model_list=selected_models,
                #                                                      downstream_model="XGBRegressor",
                #                                                      dataset=dataset.lower())

                if downstream_model == "Default Settings":
                    downstream_model = "DefaultRegressor"
                    params = None

                result, RMSE, y_batch_test, y_prob, x_batch, y_batch = fm4m.multi_modal(model_list=selected_models,
                                                                      downstream_model=downstream_model,
                                                                      params=params,
                                                                      dataset=dataset)

        else:
            if task_type == "Classification":
                #result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.single_modal(model=selected_models[0],
                #                                                                downstream_model="XGBClassifier",
                #                                                                dataset=dataset.lower())
                if downstream_model == "Default Settings":
                    downstream_model = "DefaultClassifier"
                    params = None

                result, roc_auc, fpr, tpr, x_batch, y_batch = fm4m.single_modal(model=selected_models[0],
                                                                                downstream_model=downstream_model,
                                                                                params=params,
                                                                                dataset=dataset)

            elif task_type == "Regression":
                #result, RMSE, y_batch_test, y_prob = fm4m.single_modal(model=selected_models[0],
                #                                                       downstream_model="XGBRegressor",
                #                                                       dataset=dataset.lower())

                if downstream_model == "Default Settings":
                    downstream_model = "DefaultRegressor"
                    params = None

                result, RMSE, y_batch_test, y_prob, x_batch, y_batch = fm4m.single_modal(model=selected_models[0],
                                                                       downstream_model=downstream_model,
                                                                       params=params,
                                                                       dataset=dataset)

        if result == None:
            result = "Data & Model Setting is incorrect"
    except Exception as e:
        return f"An error occurred: {e}"
    return f"{result}"


# Function to handle plot display
def display_plot(plot_type):
    fig, ax = plt.subplots()

    if plot_type == "Latent Space":
        global x_batch, y_batch
        ax.set_title("T-SNE Plot")
        # reducer = umap.UMAP(metric='euclidean', n_neighbors=  10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
        # features_umap = reducer.fit_transform(x_batch[:500])
        # x = y_batch.values[:500]
        # index_0 = [index for index in range(len(x)) if x[index] == 0]
        # index_1 = [index for index in range(len(x)) if x[index] == 1]
        class_0 = x_batch  # features_umap[index_0]
        class_1 = y_batch  # features_umap[index_1]

        """with open("latent_multi_bace.pkl", "rb") as f:
            class_0, class_1 = pickle.load(f)
        """
        plt.scatter(class_1[:, 0], class_1[:, 1], c='red', label='Class 1')
        plt.scatter(class_0[:, 0], class_0[:, 1], c='blue', label='Class 0')

        ax.set_xlabel('Feature 1')
        ax.set_ylabel('Feature 2')
        ax.set_title('Dataset Distribution')

    elif plot_type == "ROC-AUC":
        global roc_auc, fpr, tpr
        ax.set_title("ROC-AUC Curve")
        try:
            ax.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.4f})')
            ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
            ax.set_xlim([0.0, 1.0])
            ax.set_ylim([0.0, 1.05])
        except:
            pass
        ax.set_xlabel('False Positive Rate')
        ax.set_ylabel('True Positive Rate')
        ax.set_title('Receiver Operating Characteristic')
        ax.legend(loc='lower right')

    elif plot_type == "Parity Plot":
        global RMSE, y_batch_test, y_prob
        ax.set_title("Parity plot")

        # change format
        try:
            print(y_batch_test)
            print(y_prob)
            y_batch_test = np.array(y_batch_test, dtype=float)
            y_prob = np.array(y_prob, dtype=float)
            ax.scatter(y_batch_test, y_prob, color="blue", label=f"Predicted vs Actual (RMSE: {RMSE:.4f})")
            min_val = min(min(y_batch_test), min(y_prob))
            max_val = max(max(y_batch_test), max(y_prob))
            ax.plot([min_val, max_val], [min_val, max_val], 'r-')

        except:

            y_batch_test = []
            y_prob = []
            RMSE = None
            print(y_batch_test)
            print(y_prob)





        ax.set_xlabel('Actual Values')
        ax.set_ylabel('Predicted Values')

        ax.legend(loc='lower right')
    return fig


# Predefined dataset paths (these should be adjusted to your file paths)
predefined_datasets = {
    " ": " ",
    "BACE": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class",
    "ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop",
}


# Function to load a predefined dataset from the local path
def load_predefined_dataset(dataset_name):
    val = predefined_datasets.get(dataset_name)
    try: file_path = val.split(",")[0]
    except:file_path=False

    if file_path:
        df = pd.read_csv(file_path)
        return df.head(), gr.update(choices=list(df.columns)), gr.update(choices=list(df.columns)), f"{dataset_name.lower()}"
    return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[]), f"Dataset not found"


# Function to display the head of the uploaded CSV file
def display_csv_head(file):
    if file is not None:
        # Load the CSV file into a DataFrame
        df = pd.read_csv(file.name)
        return df.head(), gr.update(choices=list(df.columns)), gr.update(choices=list(df.columns))
    return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[])


# Function to handle dataset selection (predefined or custom)
def handle_dataset_selection(selected_dataset):
    if selected_dataset == "Custom Dataset":
        # Show file upload fields for train and test datasets if "Custom Dataset" is selected
        return gr.update(visible=True), gr.update(visible=True),  gr.update(visible=True), gr.update(visible=True), gr.update(
            visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
    else:
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(
            visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


# Function to select input and output columns and display a message
def select_columns(input_column, output_column, train_data, test_data,dataset_name):
    if input_column and output_column:
        return f"{train_data.name},{test_data.name},{input_column},{output_column},{dataset_name}"
    return "Please select both input and output columns."

def set_dataname(dataset_name, dataset_selector ):
    if dataset_selector == "Custom Dataset":
        return f"{dataset_name}"
    return f"{dataset_selector}"

# Function to create model based on user input
def create_model(model_name, max_depth=None, n_estimators=None, alpha=None, degree=None, kernel=None):
    if model_name == "XGBClassifier":
        model = xgb.XGBClassifier(objective='binary:logistic',eval_metric= 'auc', max_depth=max_depth, n_estimators=n_estimators, alpha=alpha)
    elif model_name == "SVR":
        model = SVR(degree=degree, kernel=kernel)
    elif model_name == "Kernel Ridge":
        model = KernelRidge(alpha=alpha, degree=degree, kernel=kernel)
    elif model_name == "Linear Regression":
        model = LinearRegression()
    elif model_name == "Default - Auto":
        model = "Default Settings"
        return f"{model}"
    else:
        return "Model not supported."

    return f"{model_name} * {model.get_params()}"
def model_selector(model_name):
    # Dynamically return the appropriate hyperparameter components based on the selected model
    if model_name == "XGBClassifier":
        return (
            gr.Slider(1, 10, label="max_depth"),
            gr.Slider(50, 500, label="n_estimators"),
            gr.Slider(0.1, 10.0, step=0.1, label="alpha")
        )
    elif model_name == "SVR":
        return (
            gr.Slider(1, 5, label="degree"),
            gr.Dropdown(["rbf", "poly", "linear"], label="kernel")
        )
    elif model_name == "Kernel Ridge":
        return (
            gr.Slider(0.1, 10.0, step=0.1, label="alpha"),
            gr.Slider(1, 5, label="degree"),
            gr.Dropdown(["rbf", "poly", "linear"], label="kernel")
        )
    elif model_name == "Linear Regression":
        return ()  # No hyperparameters for Linear Regression
    else:
        return ()



# Define the Gradio layout
# with gr.Blocks(theme=my_theme) as demo:
with gr.Blocks() as demo:
    with gr.Row():
        # Left Column
        with gr.Column():
            gr.HTML('''
           <div style="background-color: #6A8EAE; color: #FFFFFF; padding: 10px;">
                <h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Data & Model Setting</h3>
            </div>
            ''')
            # gr.Markdown("## Data & Model Setting")
            #dataset_dropdown = gr.Dropdown(choices=datasets, label="Select Dat")

            # Dropdown menu for predefined datasets including "Custom Dataset" option
            dataset_selector = gr.Dropdown(label="Select Dataset",
                                           choices=list(predefined_datasets.keys()) + ["Custom Dataset"])
            # Display the message for selected columns
            selected_columns_message = gr.Textbox(label="Selected Columns Info", visible=False)

            with gr.Accordion("Dataset Settings", open=True):
                # File upload options for custom dataset (train and test)
                dataset_name = gr.Textbox(label="Dataset Name", visible=False)
                train_file = gr.File(label="Upload Custom Train Dataset", file_types=[".csv"], visible=False)
                train_display = gr.Dataframe(label="Train Dataset Preview (First 5 Rows)", visible=False, interactive=False)

                test_file = gr.File(label="Upload Custom Test Dataset", file_types=[".csv"], visible=False)
                test_display = gr.Dataframe(label="Test Dataset Preview (First 5 Rows)", visible=False, interactive=False)

                # Predefined dataset displays
                predefined_display = gr.Dataframe(label="Predefined Dataset Preview (First 5 Rows)", visible=False,
                                                  interactive=False)



                # Dropdowns for selecting input and output columns for the custom dataset
                input_column_selector = gr.Dropdown(label="Select Input Column", choices=[], visible=False)
                output_column_selector = gr.Dropdown(label="Select Output Column", choices=[], visible=False)

                #selected_columns_message = gr.Textbox(label="Selected Columns Info", visible=True)

                # When a dataset is selected, show either file upload fields (for custom) or load predefined datasets
                dataset_selector.change(handle_dataset_selection,
                                        inputs=dataset_selector,
                                        outputs=[dataset_name, train_file, train_display, test_file, test_display, predefined_display,
                                                 input_column_selector, output_column_selector])

                # When a predefined dataset is selected, load its head and update column selectors
                dataset_selector.change(load_predefined_dataset,
                                        inputs=dataset_selector,
                                        outputs=[predefined_display, input_column_selector, output_column_selector, selected_columns_message])

                # When a custom train file is uploaded, display its head and update column selectors
                train_file.change(display_csv_head, inputs=train_file,
                                  outputs=[train_display, input_column_selector, output_column_selector])

                # When a custom test file is uploaded, display its head
                test_file.change(display_csv_head, inputs=test_file,
                                 outputs=[test_display, input_column_selector, output_column_selector])

                dataset_selector.change(set_dataname,
                                    inputs=[dataset_name, dataset_selector],
                                    outputs=dataset_name)

                # Update the selected columns information when dropdown values are changed
                input_column_selector.change(select_columns,
                                             inputs=[input_column_selector, output_column_selector, train_file, test_file, dataset_name],
                                             outputs=selected_columns_message)

                output_column_selector.change(select_columns,
                                              inputs=[input_column_selector, output_column_selector, train_file, test_file, dataset_name],
                                              outputs=selected_columns_message)

            model_checkbox = gr.CheckboxGroup(choices=models_enabled, label="Select Model")

            # Add disabled checkboxes for GNN and FNN
            # gnn_checkbox = gr.Checkbox(label="GNN (Disabled)", value=False, interactive=False)
            # fnn_checkbox = gr.Checkbox(label="FNN (Disabled)", value=False, interactive=False)

            task_radiobutton = gr.Radio(choices=["Classification", "Regression"], label="Task Type")

            ####### adding hyper parameter tuning ###########
            model_name = gr.Dropdown(["Default - Auto", "XGBClassifier", "SVR", "Kernel Ridge", "Linear Regression"], label="Select Downstream Model")
            with gr.Accordion("Downstream Hyperparameter Settings", open=True):
                # Create placeholders for hyperparameter components
                max_depth = gr.Slider(1, 20, step=1,visible=False, label="max_depth")
                n_estimators = gr.Slider(100, 5000, step=100, visible=False, label="n_estimators")
                alpha = gr.Slider(0.1, 10.0, step=0.1, visible=False, label="alpha")
                degree = gr.Slider(1, 20, step=1,visible=False, label="degree")
                kernel = gr.Dropdown(choices=["rbf", "poly", "linear"], visible=False, label="kernel")

                # Output textbox
                output = gr.Textbox(label="Loaded Parameters")


            # Dynamically show relevant hyperparameters based on selected model
            def update_hyperparameters(model_name):
                if model_name == "XGBClassifier":
                    return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(
                        visible=False), gr.update(visible=False)
                elif model_name == "SVR":
                    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(
                        visible=True), gr.update(visible=True)
                elif model_name == "Kernel Ridge":
                    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(
                        visible=True), gr.update(visible=True)
                elif model_name == "Linear Regression":
                    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(
                        visible=False), gr.update(visible=False)
                elif model_name == "Default - Auto":
                    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(
                        visible=False), gr.update(visible=False)


            # When model is selected, update which hyperparameters are visible
            model_name.change(update_hyperparameters, inputs=[model_name],
                              outputs=[max_depth, n_estimators, alpha, degree, kernel])

            # Submit button to create the model with selected hyperparameters
            submit_button = gr.Button("Create Downstream Model")


            # Function to handle model creation based on input parameters
            def on_submit(model_name, max_depth, n_estimators, alpha, degree, kernel):
                if model_name == "XGBClassifier":
                    return create_model(model_name, max_depth=max_depth, n_estimators=n_estimators, alpha=alpha)
                elif model_name == "SVR":
                    return create_model(model_name, degree=degree, kernel=kernel)
                elif model_name == "Kernel Ridge":
                    return create_model(model_name, alpha=alpha, degree=degree, kernel=kernel)
                elif model_name == "Linear Regression":
                    return create_model(model_name)
                elif model_name == "Default - Auto":
                    return create_model(model_name)

            # When the submit button is clicked, run the on_submit function
            submit_button.click(on_submit, inputs=[model_name, max_depth, n_estimators, alpha, degree, kernel],
                                outputs=output)
            ###### End of hyper param tuning #########

            fusion_radiobutton = gr.Radio(choices=fusion_available, label="Fusion Type")



            eval_button = gr.Button("Train downstream model")
            #eval_button.style(css_class="custom-button-left")

        # Middle Column
        with gr.Column():
            gr.HTML('''
           <div style="background-color: #8F9779; color: #FFFFFF; padding: 10px;">
                <h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Downstream Task 1: Property Prediction</h3>
            </div>
            ''')
            # gr.Markdown("## Downstream task Result")
            eval_output = gr.Textbox(label="Train downstream model")

            plot_radio = gr.Radio(choices=["ROC-AUC", "Parity Plot", "Latent Space"], label="Select Plot Type")
            plot_output = gr.Plot(label="Visualization")#, height=250, width=250)

            #download_rep = gr.Button("Download representation")

            create_log = gr.Button("Store log")

            log_table = gr.Dataframe(value=log_df, label="Log of Selections and Results", interactive=False)

            eval_button.click(display_eval,
                              inputs=[model_checkbox, selected_columns_message, task_radiobutton, output, fusion_radiobutton],
                              outputs=eval_output)

            plot_radio.change(display_plot, inputs=plot_radio, outputs=plot_output)


            # Function to gather selected models
            def gather_selected_models(*models):
                selected = [model for model in models if model]
                return selected


            create_log.click(evaluate_and_log, inputs=[model_checkbox, dataset_name, task_radiobutton, eval_output],
                             outputs=log_table)
            #download_rep.click(save_rep, inputs=[model_checkbox, dataset_name, task_radiobutton, eval_output],
            #                 outputs=None)

        # Right Column
        with gr.Column():
            gr.HTML('''
           <div style="background-color: #D2B48C; color: #FFFFFF; padding: 10px;">
                <h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Downstream Task 2: Molecule Generation</h3>
            </div>
            ''')
            # gr.Markdown("## Molecular Generation")
            smiles_input = gr.Textbox(label="Input SMILES String")
            image_display = gr.Image(label="Molecule Image", height=250, width=250)
            # Show images for selection
            with gr.Accordion("Select from sample molecules", open=False):
                image_selector = gr.Radio(
                    choices=list(smiles_image_mapping.keys()),
                    label="Select from sample molecules",
                    value=None,
                    #item_images=[load_image(smiles_image_mapping[key]["image"]) for key in smiles_image_mapping.keys()]
                )
                image_selector.change(load_image, image_selector, image_display)
            generate_button = gr.Button("Generate")
            gen_image_display = gr.Image(label="Generated Molecule Image", height=250, width=250)
            generated_output = gr.Textbox(label="Generated Output")
            property_table = gr.Dataframe(label="Molecular Properties Comparison")



            # Handle image selection
            image_selector.change(handle_image_selection, inputs=image_selector, outputs=[smiles_input, image_display])
            smiles_input.change(smiles_to_image, inputs=smiles_input, outputs=image_display)

            # Generate button to display canonical SMILES and molecule image
            generate_button.click(generate_canonical, inputs=smiles_input,
                                  outputs=[property_table, generated_output, gen_image_display])


if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0")