Spaces:
Sleeping
Sleeping
File size: 12,064 Bytes
3bd8465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import pandas as pd
def hello():
print ("world!")
def polynomial_func(x, a,b,c,d):
y = a * x - b * x**2 + c * x**3 + d
return y
def get_country_metrics(country,min_date='2023-07-01',max_date='2023-09-01'):
df_country = pd.read_csv('ecom_cvr_aov_by_month.csv',parse_dates=['DATE'])
df_country['CVR']=df_country['CVR'].apply(lambda x: x.replace("%","")).astype(float)/100
df_country['PC']=df_country['PC'].apply(lambda x: x.replace("%","")).astype(float)/100
if country in df_country.Country.unique():
return df_country[(df_country.Country==country) &
(df_country.DATE>=min_date) &
(df_country.DATE<max_date)].groupby('Country')[['CVR','AOV','PC']].mean().values[0]
else:
return df_country.loc[(df_country.DATE>=min_date) &
(df_country.DATE<max_date),['CVR','AOV','PC']].mean().values
def get_comparison_dates(min_date,max_date,period='previous_period'):
'''
period is either previous period or last year
'''
if period=='previous_period':
delta = (pd.to_datetime(max_date).to_period('M') - pd.to_datetime(min_date).to_period('M')).n
else:
delta = 12
mid,mad=(pd.DataFrame([pd.to_datetime(min_date), pd.to_datetime(max_date)]) - pd.DateOffset(months=delta)).values
return pd.to_datetime(mid[0]).strftime('%Y-%m-%d'),pd.to_datetime(mad[0]).strftime('%Y-%m-%d')
def calculate_max_spend(df,min_date,max_date,
revenue_or_ebitda='revenue',
country='DE',
platform='meta',
sub_channel='',
pprint=False):
# consider only ads with positive click outcomes and sort by cpc
if sub_channel=='':
df_temp = df[(df.clicks>0) & (df.country==country) &
(df.platform==platform) &
(df.index>min_date) & (df.index<max_date)
].sort_values('cpc').reset_index()
else:
df_temp = df[(df.clicks>0) & (df.country==country) &
(df.platform==platform) &
(df.sub_channel==sub_channel) &
(df.index>min_date) & (df.index<max_date)
].sort_values('cpc').reset_index()
# calculate cumulative spend and cumulative clicks
df_temp['cum_cost']=df_temp['cost'].cumsum()
df_temp['cum_clicks']=df_temp['clicks'].cumsum()
df_temp['cum_cpc']=df_temp['cum_cost']/df_temp['cum_clicks']
# calculate revenue and income
cvr,aov,pc = get_country_metrics(country,min_date,max_date)
df_temp['cum_revenue']=df_temp['cum_clicks']*cvr*aov
# at some stage, the ebitda becomes negative
if revenue_or_ebitda=='revenue':
df_temp['cum_income'] = df_temp['cum_revenue']-df_temp['cum_cost']
else:
df_temp['cum_income'] = df_temp['cum_revenue'] * pc - df_temp['cum_cost']
# calculate marginal cpc and marginal income
df_temp['marginal_cpc'] = (df_temp.cum_cost - df_temp.cum_cost.shift(1))/(df_temp.cum_clicks - df_temp.cum_clicks.shift(1))
df_temp['marginal_income'] = df_temp.cum_income - df_temp.cum_income.shift(1) - df_temp['marginal_cpc']
try:
params, cv = curve_fit(polynomial_func, df_temp['cum_cost'],df_temp['marginal_income'].fillna(0), p0=(1, 1,1,1))
a,b,c,d = params
# determine quality of the fit
squaredDiffs = np.square(df_temp['marginal_income'].fillna(0) - polynomial_func(df_temp['cum_cost'], a,b,c,d))
squaredDiffsFromMean = np.square(df_temp['marginal_income'].fillna(0) - np.mean(df_temp['marginal_income'].fillna(0)))
rSquared = 1 - np.sum(squaredDiffs) / np.sum(squaredDiffsFromMean)
output_msg=[]
if pprint==True:
output_msg.append(f"R² of fit for marginal income = {rSquared}")
# print(f"R² of fit for marginal income = {rSquared}")
# inspect the parameters
if pprint==True:
output_msg.append(f"Marginal income equation Y = {a} * x - {b} * x^2 + {c} * x^3 + {d}")
# calculate max costs when it becomes negative ROAS
df_marginal = pd.DataFrame(zip(np.arange(500000),
polynomial_func(np.arange(500000), a,b,c,d)
)).rename(columns={0:'cumulative_cost',1:'marginal_income'})
# join actuals to get the full picture
_ = df_temp[['cost','cpc','cum_cost', 'cum_clicks', 'cum_cpc', 'cum_revenue', 'cum_income']]
# converting cost to integer in order to join with the marginal dataset
_['cum_cost']=_['cum_cost'].apply(lambda x:np.round(x,0).astype(int))
df_marginal = pd.merge(df_marginal,
_.groupby('cum_cost')[
['cost','cpc','cum_clicks', 'cum_cpc', 'cum_revenue', 'cum_income']
].max().reset_index().rename(columns={#'cum_cost':'cumulative_cost',
'cpc':'marginal_cpc'}),
how='left',left_on='cumulative_cost',right_on='cum_cost').fillna(method='ffill')
max_spend_threshold = df_marginal.loc[(df_marginal.marginal_income.shift(1)>=0) & (df_marginal.marginal_income.shift(-1)<0),'cumulative_cost'].min()
highest_amount_spent = df_marginal.cum_cost.max()
except:
if pprint==True:
output_msg.append("Something happened during marginal CPC and equation calculations. We couldn't calculate max_spend_threshold and highest_amount_spent...")
max_spend_threshold=np.nan
highest_amount_spent=np.nan
rSquared=np.nan
total_negative_roas_spend=np.nan
if pd.notnull(max_spend_threshold):
if (max_spend_threshold>highest_amount_spent):
marginal_cpc,cum_clicks,cum_cpc,cum_revenue = np.nan, np.nan, np.nan, np.nan
if pprint==True:
output_msg.append(f"Highest amount spent during this period is: {highest_amount_spent}")
else:
marginal_cpc,cum_clicks,cum_cpc,cum_revenue = df_marginal.loc[df_marginal.cumulative_cost==max_spend_threshold,
['marginal_cpc','cum_clicks','cum_cpc','cum_revenue']].values[0]
# any spend beyond the max_spend_threshold needs to be saved
total_negative_roas_spend = df_temp.loc[df_temp.cum_cost>max_spend_threshold,['cost']].sum().values[0]
# # so to get the max cost for this tactic or strategy,
if pprint==True:
output_msg.append(f"Max spend threshold is: {max_spend_threshold}")
output_msg.append(f"For this spend, marginal_cpc={marginal_cpc}, cumulative_clicks={cum_clicks}, cumulative_cpc={cum_cpc}, cumulative_revenue={cum_revenue}")
output_msg.append(f"Total amount spent in negative ROAS={total_negative_roas_spend}")
print (output_msg)
plt.style.use('ggplot')
fig = plt.figure(figsize=(18,6))
ax1 = fig.add_subplot(121)
plt.plot(df_temp['cum_cost'],df_temp['marginal_income'], '.', label="data")
plt.plot(df_temp['cum_cost'], polynomial_func(df_temp['cum_cost'], a,b,c,d), '--', color='blue', label="fitted")
plt.xlabel('cumulative cost'); plt.ylabel('marginal income')
ax1.title.set_text('Net income at different spend levels')
ax2 = fig.add_subplot(122);
plt.scatter(df_temp['cum_cost'],df_temp['cpc']);
plt.axhline(1*cvr*aov,color='black',linestyle='--');plt.axhline(1*cvr*aov*pc,color='blue',linestyle='--');
plt.annotate(f'Any clicks above {np.round(cvr*aov,2)} SEK cpc has negative ROAS \n Above {np.round(cvr*aov*pc,2)} SEK is negative PC',size=12,xy=[0,60], color="black")
plt.xlabel('cumulative cost'); plt.ylabel('cpc')
# ax2.axes.get_xaxis().set_visible(False)
ax2.title.set_text('CPC for at different spend levels');
return fig,output_msg
else:
marginal_cpc,cum_clicks,cum_cpc,cum_revenue = np.nan, np.nan, np.nan, np.nan
total_negative_roas_spend=np.nan
if pprint==True:
print (f"Not enough data for mCPC analysis. Max threshold resulted in {max_spend_threshold}. Highest amount spent during this period is: {highest_amount_spent}")
# return df_marginal
return max_spend_threshold,highest_amount_spent,total_negative_roas_spend,marginal_cpc,cum_clicks,cum_cpc,cum_revenue,rSquared
def loop_mCPC_countries(df,min_date,max_date,
country_list=['UK', 'DE', 'US', 'NL', 'SE', 'CH', 'BE', 'EU', 'FR', 'AU'],
platform='meta'):
country_flag = ''
df_result = pd.DataFrame()
for i,d in df[(df.index>min_date) &
(df.index<max_date) & (df.platform==platform) &
(df.country.isin(country_list))].groupby(['country','sub_channel'])['cost'].sum().reset_index().iterrows():
if country_flag!=d['country']:
country_flag=d['country']
print (f"Processing {country_flag}...")
# run numbers for prior delta
mid, mad = get_comparison_dates(min_date,max_date,period='previous_period')
mcost = calculate_max_spend(
df,min_date=mid,max_date=mad,
revenue_or_ebitda='revenue',
country=d['country'],
platform=platform,
sub_channel=d['sub_channel'],
pprint=False)
# rerun values for LY this time
mid, mad = get_comparison_dates(min_date,max_date,period='LY')
mcost_ly = calculate_max_spend(
df,min_date=mid,max_date=mad,
revenue_or_ebitda='revenue',
country=d['country'],
platform=platform,
sub_channel=d['sub_channel'],
pprint=False)
# max_spend_threshold,highest_amount_spent,marginal_cpc,cum_clicks,cum_cpc,cum_revenue,rSquared = \
# combine the 2 results
df_result = pd.concat([df_result,
pd.Series({'platform':platform,
'country':d['country'],
'sub_channel':d['sub_channel'],
'budget':'',
'max_spend_PP':mcost[0],
'amt_spent_PP':mcost[1],
'rSquared_PP':mcost[6], # can you trust this mcpc analysis for this market?
'max_spend_LY':mcost_ly[0],
'amt_spent_LY':mcost_ly[1],
'rSquared_LY':mcost_ly[6], # can you trust this mcpc analysis for this market?
'cpc_PP':mcost[2],
'cpc_LY':mcost_ly[2],
'cum_clicks_PP':mcost[3],
'cum_clicks_LY':mcost_ly[3],
'cum_cpc_PP':mcost[4],
'cum_cpc_LY':mcost_ly[4],
})],axis=1)
df_result = df_result.T
df_result['diff']=df_result['max_spend_PP']-df_result['amt_spent_PP']
print (f"Total impact due to unrealized revenue and negative ROAS spend between planned and threshold costs is {(df_result['diff'].apply(abs)*-1).sum()} SEK")
return df_result.sort_values('diff',ascending=True).reset_index(drop=True) |