File size: 5,099 Bytes
dd9d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
import vllm
import torch
from collections import Counter

# Initialize Model
llm = vllm.LLM(
    "Qwen/Qwen2.5-32B-Instruct-AWQ",
    tensor_parallel_size=2, 
    quantization="AWQ",
    gpu_memory_utilization=0.95, 
    trust_remote_code=True,
    dtype="half", 
    enforce_eager=True,
    max_model_len=10500,
)
tokenizer = llm.get_tokenizer()

# Helper Functions
def extract_answer(text):
    idx = text.rfind("\\boxed")
    if idx < 0:
        return None
    
    i = idx
    num_open = 0
    close_idx = None
    
    while i < len(text):
        if text[i] == "{":
            num_open += 1
        elif text[i] == "}":
            num_open -= 1
            if num_open == 0:
                close_idx = i
                break
        i += 1
        
    if close_idx is None:
        return None
        
    boxed = text[idx:close_idx + 1]
    left = "\\boxed{"
    try:
        assert boxed[:len(left)] == left
        assert boxed[-1] == "}"
        return boxed[len(left):-1]
    except:
        return None

def majority_vote(answers):
    answers = [a for a in answers if a is not None]
    if not answers:
        return None
    counts = Counter(answers)
    return counts.most_common(1)[0][0]

class TIRAgent:
    def __init__(self, problem_id, id, problem, tokenizer, max_depth, log):
        self.problem_id = problem_id
        self.id = id
        self.depth = 1
        self.max_depth = max_depth
        self.tokenizer = tokenizer
        self.problem = problem
        self.messages = [
            {
                "role": "user",
                "content": f"""Here is a boolean expression to simplify:
{self.problem}

Show the step by step simplification using Boolean algebra laws. For each step:
1. Write the current expression
2. Name the rule applied
3. Explain the transformation clearly

Put your final simplified answer in a LaTeX box \\boxed{{}}."""
            }
        ]
        self.last_response = None
        self.answers = []
        self.is_complete = False
        self.log = log
        self.next_prompt = None

    def complete(self):
        return self.is_complete

    def add_response(self, response):
        self.depth += 1
        self.last_response = response
        self.messages.append({"role": "assistant", "content": response})
        
        # Extract boxed answer if present
        answer = extract_answer(response)
        if answer is not None:
            self.answers.append(answer)
            
        # Mark complete after first response
        self.is_complete = True

    def next_message(self):
        assert not self.is_complete
        text = self.tokenizer.apply_chat_template(
            self.messages,
            tokenize=False,
            add_generation_prompt=True
        )
        return text

    def final_answer(self):
        ans = None
        if len(self.answers) > 0:
            ans = self.answers[-1]
        if self.log:
            self.log.writerow([self.problem_id, self.id, ans])
        return ans

class SCTIRAgent:
    def __init__(self, problem_id, problem, tokenizer, samples, max_depth, log):
        self.problem_id = problem_id
        self.problem = problem
        self.tokenizer = tokenizer
        self.samples = samples
        self.max_depth = max_depth
        self.agents = [
            TIRAgent(problem_id, i, problem, tokenizer, max_depth, log)
            for i in range(samples)
        ]
        self.log = log

    def complete(self):
        return all(agent.complete() for agent in self.agents)

    def get_ready_agents(self):
        return [agent for agent in self.agents if not agent.complete()]

    def final_answer(self):
        assert self.complete()
        answers = [agent.final_answer() for agent in self.agents]
        answer = majority_vote(answers)
        return answer if answer is not None else None

# Sampling parameters
sampling_params = vllm.SamplingParams(
    max_tokens=512,
    temperature=0.7,
    top_p=0.9
)

def simplify_boolean_expression(expression):
    agent = SCTIRAgent(0, expression, tokenizer, samples=1, max_depth=1, log=None)
    
    while not agent.complete():
        ready_agents = agent.get_ready_agents()
        texts = [a.next_message() for a in ready_agents]
        
        responses = llm.generate(texts, sampling_params)
        
        for j, ready_agent in enumerate(ready_agents):
            response = responses[j].outputs[0].text
            ready_agent.add_response(response)
    
    answer = agent.final_answer()
    return answer

# Gradio Interface
def interface(boolean_expr):
    simplified_expr = simplify_boolean_expression(boolean_expr)
    return simplified_expr

# Gradio app
app = gr.Interface(
    fn=interface,
    inputs=gr.Textbox(label="Enter Boolean Expression", placeholder="e.g., (B.C' + A'.D).(A.B' + C.D')"),
    outputs=gr.Textbox(label="Final Simplified Expression"),
    title="Boolean Expression Simplifier",
    description="Input a Boolean expression, and the model will provide the final simplified result.",
)

if __name__ == "__main__":
    app.launch()