File size: 19,297 Bytes
2f99bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import warnings
import cv2
import dlib
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
import gradio as gr
import numpy as np
import torch
from retinaface.pre_trained_models import get_model

from Scripts.model import create_cam, create_model
from Scripts.preprocess import crop_face, extract_face, extract_frames
from Scripts.ca_generator import get_augs
from Scripts.sbi_generator import (IoUfrom2bboxes, get_dlib_landmarks,
                                   get_retina_bbox, get_transforms,
                                   reorder_landmark, self_blending)

warnings.filterwarnings('ignore')


# Model Initialization
device = torch.device('cpu')

sbcl = create_model("Weights/94_0.9485_val.tar")
sbi = create_model("Weights/FFc23.tar")

# Face Detector Initialization
face_detector = get_model("resnet50_2020-07-20", max_size=1024, device=device)
face_detector.eval()

# Grad-CAM Initialization
cam_sbi = create_cam(sbi)
cam_sbcl = create_cam(sbcl)
targets = [ClassifierOutputTarget(1)]

# Examples
examples = ["Examples/Fake/fake1.png", "Examples/Real/real1.png", "Examples/Real/real2.png", "Examples/Fake/fake3.png", "Examples/Real/real3.png",
            "Examples/Fake/fake4.png", "Examples/Real/real4.png", "Examples/Fake/fake5.png", "Examples/Fake/fake6.png", "Examples/Fake/fake7.png", ]
examples_videos = ['Examples/Fake1.mp4', 'Examples/Real1.mp4']
examples_sbi = ["Examples/Fake/fake1.png", "Examples/Real/real1.png", "Examples/Real/real2.png", "Examples/Fake/fake3.png", "Examples/Real/real3.png",
                "Examples/Fake/fake4.png", "Examples/Fake/fake5.png", ]

# dlib Models
dlib_face_detector = dlib.get_frontal_face_detector()
dlib_face_predictor = dlib.shape_predictor(
    'Weights/shape_predictor_81_face_landmarks.dat')


def generate_sbi(inp, blending_type, face_region):
    """
    Visualizes the different steps in the self-blended image generation process for both RGB image and mask
    """
    # Getting face bboxes and landmarks
    landmark = get_dlib_landmarks(
        inp, dlib_face_detector, dlib_face_predictor)[0]
    bbox_lm = np.array([landmark[:, 0].min(), landmark[:, 1].min(),
                        landmark[:, 0].max(), landmark[:, 1].max()])
    bboxes = get_retina_bbox(inp, face_detector)[:2]

    # Reducing bboxes to just one if multiple
    iou_max = -1
    for i in range(len(bboxes)):
        iou = IoUfrom2bboxes(bbox_lm, bboxes[i].flatten())
        if iou_max < iou:
            bbox = bboxes[i]
            iou_max = iou

    # Input cropping
    landmarks = reorder_landmark(landmark)
    img, landmarks, bbox, __ = crop_face(
        inp, landmarks, bbox, margin=True, crop_by_bbox=False)
    cropped_input_face = img

    # Blending
    img_r_before_both_transforms, img_f_before_both_transforms, mask, mask_original, source_before_affine_transforms, _, source_after_affine_transforms, mask_after_affine_transforms = self_blending(
        img.copy(), landmark.copy(), blending_type, face_region)

    # Post-blending transforms
    transformed = get_transforms()(image=img_f_before_both_transforms.astype(
        'uint8'), image1=img_r_before_both_transforms.astype('uint8'))
    img_f_after_both_transforms, img_r_after_both_transforms = transformed[
        'image'], transformed['image1']

    # Crop and resize the faces
    img_f, _, __, ___, y0_new, y1_new, x0_new, x1_new = crop_face(
        img_f_after_both_transforms, landmark, bbox, margin=False, crop_by_bbox=True, abs_coord=True, phase='train')
    img_r = img_r_after_both_transforms[y0_new:y1_new, x0_new:x1_new]
    img_f, img_r = cv2.resize(img_f, (380, 380), interpolation=cv2.INTER_LINEAR), cv2.resize(
        img_r, (380, 380), interpolation=cv2.INTER_LINEAR)

    # Mask operations
    mask, mask_original = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB), cv2.cvtColor(
        mask_original, cv2.COLOR_GRAY2RGB)
    mask_after_affine_transforms = cv2.cvtColor(
        mask_after_affine_transforms, cv2.COLOR_GRAY2RGB)
    return cropped_input_face, img_r_before_both_transforms, img_f_before_both_transforms, img_r_after_both_transforms, img_f_after_both_transforms,\
         img_r, img_f, mask, mask_original, source_before_affine_transforms, source_after_affine_transforms, mask_after_affine_transforms


def generate_ca(inp):
    """
    Applies consistency augmentations to the given input face
    """
    try:
        face = extract_face(inp, face_detector)[0].transpose(1, 2, 0)
    except:
        raise Exception("No faces detected")
    randomErasing, randomCropping, dfdc = get_augs("REAlbu"), get_augs("RandCropAlbu"), get_augs("DFDCAlbu")
    return face, randomErasing(image=face)['image'], randomCropping(image=face)['image'], dfdc(image=face)['image']


def predict_image(inp, model):
    """
    Performs inference for a given input image and returns the prediction and CAM image.
    """
    face_list = extract_face(inp, face_detector)

    if len(face_list) == 0:
        return {'No face detected!': 1}, None, None

    with torch.no_grad():
        img = torch.tensor(face_list).to(device).float()/255

        if model == "Self-Blended Images":
            pred = sbi(img).softmax(1)[:, 1].cpu().data.numpy().tolist()[0]
        else:
            pred = sbcl(img).softmax(1)[:, 1].cpu().data.numpy().tolist()[0]

        confidences = {'Real': 1-pred, 'Fake': pred}

    if model == "Self-Blended Images":
        grayscale_cam = cam_sbi(
            input_tensor=img, targets=targets, aug_smooth=True)
    else:
        grayscale_cam = cam_sbcl(
            input_tensor=img, targets=targets, aug_smooth=True)
    grayscale_cam = grayscale_cam[0, :]
    cam_image = show_cam_on_image(face_list[0].transpose(
        1, 2, 0)/255, grayscale_cam, use_rgb=True)

    return confidences, cam_image


def predict_video(inp, model):
    """
    Performs inference for a given input video and returns the prediction and CAM image of the frame with the highest fake probability.
    """
    face_list, idx_list = extract_frames(inp, 10, face_detector)

    with torch.no_grad():
        img = torch.tensor(face_list).to(device).float()/255
        if model == "Self-Blended Images":
            pred = sbi(img).softmax(1)[:, 1]
        else:
            pred = sbcl(img).softmax(1)[:, 1]

    pred_list = []
    idx_img = -1
    for i in range(len(pred)):
        if idx_list[i] != idx_img:
            pred_list.append([])
            idx_img = idx_list[i]
        pred_list[-1].append(pred[i].item())
    pred_res = np.zeros(len(pred_list))
    for i in range(len(pred_res)):
        pred_res[i] = max(pred_list[i])
    pred = pred_res.mean()

    most_fake = np.argmax(pred_res)
    if model == "Self-Blended Images":
        grayscale_cam = cam_sbi(input_tensor=img[most_fake].unsqueeze(
            0), targets=targets, aug_smooth=True)
    else:
        grayscale_cam = cam_sbcl(input_tensor=img[most_fake].unsqueeze(
            0), targets=targets, aug_smooth=True)
    grayscale_cam = grayscale_cam[0, :]
    cam_image = show_cam_on_image(face_list[most_fake].transpose(
        1, 2, 0)/255, grayscale_cam, use_rgb=True)

    return {'Real': 1-pred, 'Fake': pred}, cam_image


with gr.Blocks(title="Self-Blended Consistency Learning", css="#custom_header {min-height: 3rem} #custom_title {min-height: 3rem; text-align: center}") as demo:
    gr.Markdown("# Face Forgery Detector", elem_id="custom_title")
    gr.Markdown("Gradio Demo for 'Face Forgery Detection with Self-Blended Consistency Learning'. To use it, simply upload your image, or click one of the examples to load them. Paper to be available on ArXiv in the near future.", elem_id="custom_title")

    with gr.Tab("Image Inference"):
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    gr.Markdown("## Inputs", elem_id="custom_header")
                    input_image = gr.Image(label="Input Image")
                    input_image.style(height=240)
                    model_selection = gr.inputs.Radio(['Self-Blended Images', 'Self-Blended Consistency Learning'],
                                                      type="value", default='Self-Blended Consistency Learning', label='Model')
                    btn = gr.Button(value="Submit")
                    btn.style(full_width=True)
            with gr.Column():
                with gr.Box():
                    gr.Markdown("## Outputs", elem_id="custom_header")
                    output_image = gr.Image(label="GradCAM Image")
                    output_image.style(height=240)
                    label_probs = gr.outputs.Label()
        gr.Examples(
            examples=examples,
            inputs=input_image,
            outputs=output_image,
            fn=predict_image,
            cache_examples=False,
        )
    with gr.Tab("Video Inference"):
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    gr.Markdown("## Inputs", elem_id="custom_header")
                    input_video = gr.Video(label="Input Video")
                    input_video.style(height=240)
                    model_selection_video = gr.inputs.Radio(
                        ['Self-Blended Images', 'Self-Blended Consistency Learning'], type="value", default='Self-Blended Consistency Learning', label='Model')
                    btn_video = gr.Button(value="Submit")
                    btn_video.style(full_width=True)

            with gr.Column():
                with gr.Box():
                    gr.Markdown("## Outputs", elem_id="custom_header")
                    output_image_video = gr.Image(label="GradCAM Image")
                    output_image_video.style(height=240)
                    label_probs_video = gr.outputs.Label()
        gr.Examples(
            examples=examples_videos,
            inputs=input_video,
            outputs=output_image_video,
            fn=predict_video,
            cache_examples=False,
        )

    with gr.Tab("SBI Generator"):
        gr.Markdown("Input an image with a face to visualize the steps involved in the self-blended image (SBI) generation. Values for augmentations are randomly chosen. Blending type and face region can be varied. \
                    This process is a slightly modified version of the process from 'Detecting Deepfakes with Self-Blended Images (CVPR 2022)'", elem_id="custom_header")
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    gr.Markdown("## Inputs", elem_id="custom_header")
                    input_image_sbi = gr.Image(label="Input Image")
                    input_image_sbi.style(height=240)
                    btn_sbi = gr.Button(value="Submit")
                    btn_sbi.style(full_width=True)
                    with gr.Row():
                        blending_type = gr.Radio(
                            ["Poisson", "Mixup"], label="Blending Type", value="Poisson", interactive=True)
                        face_region = gr.Radio(
                            ["1", "2", "3", "4"], label="Face Region", value="1", interactive=True)
                    gr.Examples(
                        examples=examples_sbi,
                        inputs=input_image_sbi,
                        fn=generate_sbi,
                        cache_examples=False,
                    )
        with gr.Row():
            with gr.Box():
                with gr.Column():
                    gr.Markdown("# Self-Blended Image Generation",
                                elem_id="custom_header")

                    with gr.Box():
                        gr.Markdown("## Step 1", elem_id="custom_header")
                        gr.Markdown(
                            "Using facial landmarks models, obtain face bounding box and facial landmarks to crop face and produce mask.", elem_id="custom_header")
                        with gr.Row():
                            cropped_input_face = gr.Image(
                                label="Input face after cropping")
                            cropped_input_face.style(height=240)
                            mask_original = gr.Image(label="Original mask")
                            mask_original.style(height=240)
                        gr.Markdown("The cropped input face is duplicated to become a 'source' face and a 'target' face. Eventually, the source face will be blended onto the target face after augmentations done below.", elem_id="custom_header")

                    with gr.Box():
                        gr.Markdown("## Step 2", elem_id="custom_header")
                        gr.Markdown("Apply source-target augmentations",
                                    elem_id="custom_header")
                        with gr.Row():
                            source_before_affine_transforms = gr.Image(
                                label="Source face after source-target augmentations")
                            source_before_affine_transforms.style(height=240)
                        gr.Markdown("In this case, the source-target augmentations are applied to the source image for straight-forward visualization. In actual training,\
                                     the augmentations are applied to either source or target face with 1:1 probability. Augmentations applied here \
                                     include RGBShift, HueSaturationValue, RandomBrightnessContrast, RandomDownScale, Sharpen from Albumentations.")

                    with gr.Box():
                        gr.Markdown("## Step 3", elem_id="custom_header")
                        gr.Markdown(
                            "Apply affine/elastic augmentations to augmented source image/mask", elem_id="custom_header")
                        with gr.Row():
                            source_after_affine_transforms = gr.Image(
                                label="Source face after affine augmentations")
                            source_after_affine_transforms.style(height=240)

                            mask_after_affine_transforms = gr.Image(
                                label="Mask after elastic augmentations")
                            mask_after_affine_transforms.style(height=240)

                    with gr.Box():
                        gr.Markdown("## Step 4", elem_id="custom_header")
                        gr.Markdown(
                            "Apply smoothing augmentations to mask for gentle blending", elem_id="custom_header")
                        mask = gr.Image(label="Mask after Gaussian smoothing")
                        mask.style(height=240)

                    with gr.Box():
                        gr.Markdown("## Step 5", elem_id="custom_header")
                        gr.Markdown(
                            "Perform blending (based on chosen blending option) to produce self-blended fake", elem_id="custom_header")
                        with gr.Row():
                            img_r_before_both_transforms = gr.Image(
                                label="Real face (for comparison)")
                            img_r_before_both_transforms.style(height=240)

                            img_f_before_both_transforms = gr.Image(
                                label="Self-blended fake face")
                            img_f_before_both_transforms.style(height=240)

                    with gr.Box():
                        gr.Markdown("## Step 6", elem_id="custom_header")
                        gr.Markdown(
                            "Apply the same randomly chosen augmentations to both real and self-blended fake", elem_id="custom_header")
                        with gr.Row():
                            img_r_after_both_transforms = gr.Image(
                                label="Real face after augmentations")
                            img_r_after_both_transforms.style(height=240)

                            img_f_after_both_transforms = gr.Image(
                                label="Self-blended fake face after augmentations")
                            img_f_after_both_transforms.style(height=240)
                        gr.Markdown(
                            "Augmentations applied here include RGBShift, HueSaturationValue, RandomBrightnessContrast, ImageCompression from Albumentations.")

                    with gr.Box():
                        gr.Markdown("## Step 7", elem_id="custom_header")
                        gr.Markdown(
                            "Crop real and self-blended fake to only have the faces", elem_id="custom_header")
                        with gr.Row():
                            output_r = gr.Image(label="Final real face")
                            output_r.style(height=240)

                            output_f = gr.Image(label="Final SBI face")
                            output_f.style(height=240)
                        gr.Markdown(
                            "These are the images that are eventually fed into the model for training", elem_id="custom_header")

    with gr.Tab("Consistency Augmentations"):
        gr.Markdown("Input an image with a face to visualize the consistency augmentations. Values for augmentations are randomly chosen.", elem_id="custom_header")
        with gr.Row():
            with gr.Box():
                gr.Markdown("## Input", elem_id="custom_header")
                input_image_ca = gr.Image(label="Input Image")
                input_image_ca.style(height=240)
                btn_ca = gr.Button(value="Submit")
                btn_ca.style(full_width=True)
                gr.Examples(
                    examples=examples_sbi,
                    inputs=input_image_ca,
                    fn=generate_ca,
                    cache_examples=False,
                )
        with gr.Row():
            with gr.Box():
                with gr.Row():
                    og = gr.Image(label="Cropped Face (No augs)")
                    og.style(height=240)
                    re = gr.Image(label="Random Erasing")
                    re.style(height=240)
                    rc = gr.Image(label="Random Cropping")
                    rc.style(height=240)
                    dfdc = gr.Image(label="DFDC Selimsef")
                    dfdc.style(height=240)

    btn.click(predict_image, inputs=[input_image, model_selection], outputs=[
              label_probs, output_image])
    btn_video.click(predict_video, inputs=[input_video, model_selection_video], outputs=[
                    label_probs_video, output_image_video])
    btn_sbi.click(generate_sbi, inputs=[input_image_sbi, blending_type, face_region], outputs=[cropped_input_face, img_r_before_both_transforms, img_f_before_both_transforms,
                                                                                               img_r_after_both_transforms, img_f_after_both_transforms, output_r, output_f, mask, 
                                                                                               mask_original, source_before_affine_transforms, source_after_affine_transforms, mask_after_affine_transforms])
    btn_ca.click(generate_ca, inputs=[
                 input_image_ca], outputs=[og, re, rc, dfdc])
if __name__ == "__main__":
    demo.launch()