File size: 7,344 Bytes
0870534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import math
import types

import torch
import torch.nn as nn
import torch.nn.functional as F

from .lseg_blocks import FeatureFusionBlock, Interpolate, _make_encoder, FeatureFusionBlock_custom, forward_vit
import clip
import numpy as np
import pandas as pd
import os

class depthwise_clipseg_conv(nn.Module):
    def __init__(self):
        super(depthwise_clipseg_conv, self).__init__()
        self.depthwise = nn.Conv2d(1, 1, kernel_size=3, padding=1)
    
    def depthwise_clipseg(self, x, channels):
        x = torch.cat([self.depthwise(x[:, i].unsqueeze(1)) for i in range(channels)], dim=1)
        return x

    def forward(self, x):
        channels = x.shape[1]
        out = self.depthwise_clipseg(x, channels)
        return out


class depthwise_conv(nn.Module):
    def __init__(self, kernel_size=3, stride=1, padding=1):
        super(depthwise_conv, self).__init__()
        self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=stride, padding=padding)

    def forward(self, x):
        # support for 4D tensor with NCHW
        C, H, W = x.shape[1:]
        x = x.reshape(-1, 1, H, W)
        x = self.depthwise(x)
        x = x.view(-1, C, H, W)
        return x


class depthwise_block(nn.Module):
    def __init__(self, kernel_size=3, stride=1, padding=1, activation='relu'):
        super(depthwise_block, self).__init__()
        self.depthwise = depthwise_conv(kernel_size=3, stride=1, padding=1)
        if activation == 'relu':
            self.activation = nn.ReLU()
        elif activation == 'lrelu':
            self.activation = nn.LeakyReLU()
        elif activation == 'tanh':
            self.activation = nn.Tanh()

    def forward(self, x, act=True):
        x = self.depthwise(x)
        if act:
            x = self.activation(x)
        return x


class bottleneck_block(nn.Module):
    def __init__(self, kernel_size=3, stride=1, padding=1, activation='relu'):
        super(bottleneck_block, self).__init__()
        self.depthwise = depthwise_conv(kernel_size=3, stride=1, padding=1)
        if activation == 'relu':
            self.activation = nn.ReLU()
        elif activation == 'lrelu':
            self.activation = nn.LeakyReLU()
        elif activation == 'tanh':
            self.activation = nn.Tanh()


    def forward(self, x, act=True):
        sum_layer = x.max(dim=1, keepdim=True)[0]
        x = self.depthwise(x)
        x = x + sum_layer
        if act:
            x = self.activation(x)
        return x

class BaseModel(torch.nn.Module):
    def load(self, path):
        """Load model from file.
        Args:
            path (str): file path
        """
        parameters = torch.load(path, map_location=torch.device("cpu"))

        if "optimizer" in parameters:
            parameters = parameters["model"]

        self.load_state_dict(parameters)

def _make_fusion_block(features, use_bn):
    return FeatureFusionBlock_custom(
        features,
        activation=nn.ReLU(False),
        deconv=False,
        bn=use_bn,
        expand=False,
        align_corners=True,
    )

class LSeg(BaseModel):
    def __init__(
        self,
        head,
        features=256,
        backbone="clip_vitl16_384",
        readout="project",
        channels_last=False,
        use_bn=False,
        **kwargs,
    ):
        super(LSeg, self).__init__()

        self.channels_last = channels_last

        hooks = {
            "clip_vitl16_384": [5, 11, 17, 23],
            "clipRN50x16_vitl16_384": [5, 11, 17, 23],
            "clip_vitb32_384": [2, 5, 8, 11],
        }

        # Instantiate backbone and reassemble blocks
        self.clip_pretrained, self.pretrained, self.scratch = _make_encoder(
            backbone,
            features,
            groups=1,
            expand=False,
            exportable=False,
            hooks=hooks[backbone],
            use_readout=readout,
        )

        self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet4 = _make_fusion_block(features, use_bn)

        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)).exp()
        if backbone in ["clipRN50x16_vitl16_384"]:
            self.out_c = 768
        else:
            self.out_c = 512
        self.scratch.head1 = nn.Conv2d(features, self.out_c, kernel_size=1)

        self.arch_option = kwargs["arch_option"]
        if self.arch_option == 1:
            self.scratch.head_block = bottleneck_block(activation=kwargs["activation"])
            self.block_depth = kwargs['block_depth']
        elif self.arch_option == 2:
            self.scratch.head_block = depthwise_block(activation=kwargs["activation"])
            self.block_depth = kwargs['block_depth']

        self.scratch.output_conv = head

        self.text = clip.tokenize(self.labels)    
        
    def forward(self, x, labelset=''):
        if labelset == '':
            text = self.text
        else:
            text = clip.tokenize(labelset)    
        
        if self.channels_last == True:
            x.contiguous(memory_format=torch.channels_last)

        layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)

        layer_1_rn = self.scratch.layer1_rn(layer_1)
        layer_2_rn = self.scratch.layer2_rn(layer_2)
        layer_3_rn = self.scratch.layer3_rn(layer_3)
        layer_4_rn = self.scratch.layer4_rn(layer_4)

        path_4 = self.scratch.refinenet4(layer_4_rn)
        path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
        path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
        path_1 = self.scratch.refinenet1(path_2, layer_1_rn)

        text = text.to(x.device)
        self.logit_scale = self.logit_scale.to(x.device)
        text_features = self.clip_pretrained.encode_text(text)

        image_features = self.scratch.head1(path_1)

        imshape = image_features.shape
        image_features = image_features.permute(0,2,3,1).reshape(-1, self.out_c)

        # normalized features
        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)
        
        logits_per_image = self.logit_scale * image_features.half() @ text_features.t()

        out = logits_per_image.float().view(imshape[0], imshape[2], imshape[3], -1).permute(0,3,1,2)

        if self.arch_option in [1, 2]:
            for _ in range(self.block_depth - 1):
                out = self.scratch.head_block(out)
            out = self.scratch.head_block(out, False)

        out = self.scratch.output_conv(out)
            
        return out


class LSegNet(LSeg):
    """Network for semantic segmentation."""
    def __init__(self, labels, path=None, scale_factor=0.5, crop_size=480, **kwargs):

        features = kwargs["features"] if "features" in kwargs else 256
        kwargs["use_bn"] = True

        self.crop_size = crop_size
        self.scale_factor = scale_factor
        self.labels = labels

        head = nn.Sequential(
            Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
        )

        super().__init__(head, **kwargs)

        if path is not None:
            self.load(path)