File size: 11,407 Bytes
0870534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import os
import pathlib
from glob import glob
from argparse import ArgumentParser
import torch
import pytorch_lightning as pl
import numpy as np
import cv2
import random
import math
from torchvision import transforms
def do_training(hparams, model_constructor):
# instantiate model
model = model_constructor(**vars(hparams))
# set all sorts of training parameters
hparams.gpus = -1
hparams.accelerator = "ddp"
hparams.benchmark = True
if hparams.dry_run:
print("Doing a dry run")
hparams.overfit_batches = hparams.batch_size
if not hparams.no_resume:
hparams = set_resume_parameters(hparams)
if not hasattr(hparams, "version") or hparams.version is None:
hparams.version = 0
hparams.sync_batchnorm = True
ttlogger = pl.loggers.TestTubeLogger(
"checkpoints", name=hparams.exp_name, version=hparams.version
)
hparams.callbacks = make_checkpoint_callbacks(hparams.exp_name, hparams.version)
wblogger = get_wandb_logger(hparams)
hparams.logger = [wblogger, ttlogger]
trainer = pl.Trainer.from_argparse_args(hparams)
trainer.fit(model)
def get_default_argument_parser():
parser = ArgumentParser(add_help=False)
parser.add_argument(
"--num_nodes",
type=int,
default=1,
help="number of nodes for distributed training",
)
parser.add_argument(
"--exp_name", type=str, required=True, help="name your experiment"
)
parser.add_argument(
"--dry-run",
action="store_true",
default=False,
help="run on batch of train/val/test",
)
parser.add_argument(
"--no_resume",
action="store_true",
default=False,
help="resume if we have a checkpoint",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="accumulate N batches for gradient computation",
)
parser.add_argument(
"--max_epochs", type=int, default=200, help="maximum number of epochs"
)
parser.add_argument(
"--project_name", type=str, default="lightseg", help="project name for logging"
)
return parser
def make_checkpoint_callbacks(exp_name, version, base_path="checkpoints", frequency=1):
version = 0 if version is None else version
base_callback = pl.callbacks.ModelCheckpoint(
dirpath=f"{base_path}/{exp_name}/version_{version}/checkpoints/",
save_last=True,
verbose=True,
)
val_callback = pl.callbacks.ModelCheckpoint(
monitor="val_acc_epoch",
dirpath=f"{base_path}/{exp_name}/version_{version}/checkpoints/",
filename="result-{epoch}-{val_acc_epoch:.2f}",
mode="max",
save_top_k=3,
verbose=True,
)
return [base_callback, val_callback]
def get_latest_version(folder):
versions = [
int(pathlib.PurePath(path).name.split("_")[-1])
for path in glob(f"{folder}/version_*/")
]
if len(versions) == 0:
return None
versions.sort()
return versions[-1]
def get_latest_checkpoint(exp_name, version):
while version > -1:
folder = f"./checkpoints/{exp_name}/version_{version}/checkpoints/"
latest = f"{folder}/last.ckpt"
if os.path.exists(latest):
return latest, version
chkpts = glob(f"{folder}/epoch=*.ckpt")
if len(chkpts) > 0:
break
version -= 1
if len(chkpts) == 0:
return None, None
latest = max(chkpts, key=os.path.getctime)
return latest, version
def set_resume_parameters(hparams):
version = get_latest_version(f"./checkpoints/{hparams.exp_name}")
if version is not None:
latest, version = get_latest_checkpoint(hparams.exp_name, version)
print(f"Resuming checkpoint {latest}, exp_version={version}")
hparams.resume_from_checkpoint = latest
hparams.version = version
wandb_file = "checkpoints/{hparams.exp_name}/version_{version}/wandb_id"
if os.path.exists(wandb_file):
with open(wandb_file, "r") as f:
hparams.wandb_id = f.read()
else:
version = 0
return hparams
def get_wandb_logger(hparams):
exp_dir = f"checkpoints/{hparams.exp_name}/version_{hparams.version}/"
id_file = f"{exp_dir}/wandb_id"
if os.path.exists(id_file):
with open(id_file) as f:
hparams.wandb_id = f.read()
else:
hparams.wandb_id = None
logger = pl.loggers.WandbLogger(
save_dir="checkpoints",
project=hparams.project_name,
name=hparams.exp_name,
id=hparams.wandb_id,
)
if hparams.wandb_id is None:
_ = logger.experiment
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
with open(id_file, "w") as f:
f.write(logger.version)
return logger
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
letter_box=False,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
self.__letter_box = letter_box
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def make_letter_box(self, sample):
top = bottom = (self.__height - sample.shape[0]) // 2
left = right = (self.__width - sample.shape[1]) // 2
sample = cv2.copyMakeBorder(
sample, top, bottom, left, right, cv2.BORDER_CONSTANT, None, 0
)
return sample
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__letter_box:
sample["image"] = self.make_letter_box(sample["image"])
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if self.__letter_box:
sample["disparity"] = self.make_letter_box(sample["disparity"])
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
)
if self.__letter_box:
sample["depth"] = self.make_letter_box(sample["depth"])
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if self.__letter_box:
sample["mask"] = self.make_letter_box(sample["mask"])
sample["mask"] = sample["mask"].astype(bool)
return sample
|