File size: 13,764 Bytes
0870534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import os
import argparse
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
import torch
import torch.nn.functional as F
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather
import encoding.utils as utils
from encoding.nn import SegmentationLosses, SyncBatchNorm
from encoding.parallel import DataParallelModel, DataParallelCriterion
from encoding.datasets import test_batchify_fn
from encoding.models.sseg import BaseNet
from modules.lseg_module import LSegModule
from utils import Resize
import cv2
import math
import types
import functools
import torchvision.transforms as torch_transforms
import copy
import itertools
from PIL import Image
import matplotlib.pyplot as plt
import clip
import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import matplotlib.patches as mpatches
from matplotlib.backends.backend_agg import FigureCanvasAgg
from data import get_dataset
from additional_utils.encoding_models import MultiEvalModule as LSeg_MultiEvalModule
import torchvision.transforms as transforms
class Options:
def __init__(self):
parser = argparse.ArgumentParser(description="PyTorch Segmentation")
# model and dataset
parser.add_argument(
"--model", type=str, default="encnet", help="model name (default: encnet)"
)
parser.add_argument(
"--backbone",
type=str,
default="clip_vitl16_384",
help="backbone name (default: resnet50)",
)
parser.add_argument(
"--dataset",
type=str,
default="ade20k",
help="dataset name (default: pascal12)",
)
parser.add_argument(
"--workers", type=int, default=16, metavar="N", help="dataloader threads"
)
parser.add_argument(
"--base-size", type=int, default=520, help="base image size"
)
parser.add_argument(
"--crop-size", type=int, default=480, help="crop image size"
)
parser.add_argument(
"--train-split",
type=str,
default="train",
help="dataset train split (default: train)",
)
# training hyper params
parser.add_argument(
"--aux", action="store_true", default=False, help="Auxilary Loss"
)
parser.add_argument(
"--se-loss",
action="store_true",
default=False,
help="Semantic Encoding Loss SE-loss",
)
parser.add_argument(
"--se-weight", type=float, default=0.2, help="SE-loss weight (default: 0.2)"
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
training (default: auto)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
testing (default: same as batch size)",
)
# cuda, seed and logging
parser.add_argument(
"--no-cuda",
action="store_true",
default=False,
help="disables CUDA training",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
parser.add_argument(
"--weights", type=str, default=None, help="checkpoint to test"
)
parser.add_argument(
"--eval", action="store_true", default=False, help="evaluating mIoU"
)
parser.add_argument(
"--export",
type=str,
default=None,
help="put the path to resuming file if needed",
)
parser.add_argument(
"--acc-bn",
action="store_true",
default=False,
help="Re-accumulate BN statistics",
)
parser.add_argument(
"--test-val",
action="store_true",
default=False,
help="generate masks on val set",
)
parser.add_argument(
"--no-val",
action="store_true",
default=False,
help="skip validation during training",
)
parser.add_argument(
"--module",
default='lseg',
help="select model definition",
)
# test option
parser.add_argument(
"--data-path", type=str, default=None, help="path to test image folder"
)
parser.add_argument(
"--no-scaleinv",
dest="scale_inv",
default=True,
action="store_false",
help="turn off scaleinv layers",
)
parser.add_argument(
"--widehead", default=False, action="store_true", help="wider output head"
)
parser.add_argument(
"--widehead_hr",
default=False,
action="store_true",
help="wider output head",
)
parser.add_argument(
"--ignore_index",
type=int,
default=-1,
help="numeric value of ignore label in gt",
)
parser.add_argument(
"--label_src",
type=str,
default="default",
help="how to get the labels",
)
parser.add_argument(
"--jobname",
type=str,
default="default",
help="select which dataset",
)
parser.add_argument(
"--no-strict",
dest="strict",
default=True,
action="store_false",
help="no-strict copy the model",
)
parser.add_argument(
"--arch_option",
type=int,
default=0,
help="which kind of architecture to be used",
)
parser.add_argument(
"--block_depth",
type=int,
default=0,
help="how many blocks should be used",
)
parser.add_argument(
"--activation",
choices=['lrelu', 'tanh'],
default="lrelu",
help="use which activation to activate the block",
)
self.parser = parser
def parse(self):
args = self.parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
return args
def test(args):
module = LSegModule.load_from_checkpoint(
checkpoint_path=args.weights,
data_path=args.data_path,
dataset=args.dataset,
backbone=args.backbone,
aux=args.aux,
num_features=256,
aux_weight=0,
se_loss=False,
se_weight=0,
base_lr=0,
batch_size=1,
max_epochs=0,
ignore_index=args.ignore_index,
dropout=0.0,
scale_inv=args.scale_inv,
augment=False,
no_batchnorm=False,
widehead=args.widehead,
widehead_hr=args.widehead_hr,
map_locatin="cpu",
arch_option=args.arch_option,
strict=args.strict,
block_depth=args.block_depth,
activation=args.activation,
)
input_transform = module.val_transform
num_classes = module.num_classes
# dataset
testset = get_dataset(
args.dataset,
root=args.data_path,
split="val",
mode="testval",
transform=input_transform,
)
# dataloader
loader_kwargs = (
{"num_workers": args.workers, "pin_memory": True} if args.cuda else {}
)
test_data = data.DataLoader(
testset,
batch_size=args.test_batch_size,
drop_last=False,
shuffle=False,
collate_fn=test_batchify_fn,
**loader_kwargs
)
if isinstance(module.net, BaseNet):
model = module.net
else:
model = module
model = model.eval()
model = model.cpu()
print(model)
if args.acc_bn:
from encoding.utils.precise_bn import update_bn_stats
data_kwargs = {
"transform": input_transform,
"base_size": args.base_size,
"crop_size": args.crop_size,
}
trainset = get_dataset(
args.dataset, split=args.train_split, mode="train", **data_kwargs
)
trainloader = data.DataLoader(
ReturnFirstClosure(trainset),
root=args.data_path,
batch_size=args.batch_size,
drop_last=True,
shuffle=True,
**loader_kwargs
)
print("Reseting BN statistics")
model.cuda()
update_bn_stats(model, trainloader)
if args.export:
torch.save(model.state_dict(), args.export + ".pth")
return
scales = (
[0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]
if args.dataset == "citys"
else [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
)
evaluator = LSeg_MultiEvalModule(
model, num_classes, scales=scales, flip=True
).cuda()
evaluator.eval()
metric = utils.SegmentationMetric(testset.num_class)
tbar = tqdm(test_data)
f = open("logs/log_test_{}_{}.txt".format(args.jobname, args.dataset), "a+")
per_class_iou = np.zeros(testset.num_class)
cnt = 0
for i, (image, dst) in enumerate(tbar):
if args.eval:
with torch.no_grad():
if False:
sample = {"image": image[0].cpu().permute(1, 2, 0).numpy()}
out = torch.zeros(
1, testset.num_class, image[0].shape[1], image[0].shape[2]
).cuda()
H, W = image[0].shape[1], image[0].shape[2]
for scale in scales:
long_size = int(math.ceil(520 * scale))
if H > W:
height = long_size
width = int(1.0 * W * long_size / H + 0.5)
short_size = width
else:
width = long_size
height = int(1.0 * H * long_size / W + 0.5)
short_size = height
rs = Resize(
width,
height,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_AREA,
)
inf_image = (
torch.from_numpy(rs(sample)["image"])
.cuda()
.permute(2, 0, 1)
.unsqueeze(0)
)
inf_image = torch.cat((inf_image, torch.fliplr(inf_image)), 0)
try:
pred = model(inf_image)
except:
print(H, W, sz, i)
exit()
pred0 = F.softmax(pred[0], dim=1)
pred1 = F.softmax(pred[1], dim=1)
pred = pred0 + 0.2 * pred1
out += F.interpolate(
pred.sum(0, keepdim=True),
(out.shape[2], out.shape[3]),
mode="bilinear",
align_corners=True,
)
predicts = [out]
else:
predicts = evaluator.parallel_forward(image)
metric.update(dst, predicts)
pixAcc, mIoU = metric.get()
_, _, total_inter, total_union = metric.get_all()
per_class_iou += 1.0 * total_inter / (np.spacing(1) + total_union)
cnt+=1
tbar.set_description("pixAcc: %.4f, mIoU: %.4f" % (pixAcc, mIoU))
else:
with torch.no_grad():
outputs = evaluator.parallel_forward(image)
predicts = [
testset.make_pred(torch.max(output, 1)[1].cpu().numpy())
for output in outputs
]
# output folder
outdir = "outdir_ours"
if not os.path.exists(outdir):
os.makedirs(outdir)
for predict, impath in zip(predicts, dst):
mask = utils.get_mask_pallete(predict, args.dataset)
outname = os.path.splitext(impath)[0] + ".png"
mask.save(os.path.join(outdir, outname))
if args.eval:
each_classes_iou = per_class_iou/cnt
print("pixAcc: %.4f, mIoU: %.4f" % (pixAcc, mIoU))
print(each_classes_iou)
f.write("dataset {} ==> pixAcc: {:.4f}, mIoU: {:.4f}\n".format(args.dataset, pixAcc, mIoU))
for per_iou in each_classes_iou: f.write('{:.4f}, '.format(per_iou))
f.write('\n')
class ReturnFirstClosure(object):
def __init__(self, data):
self._data = data
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
outputs = self._data[idx]
return outputs[0]
if __name__ == "__main__":
args = Options().parse()
torch.manual_seed(args.seed)
args.test_batch_size = torch.cuda.device_count()
test(args)
|