File size: 6,715 Bytes
0870534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
###########################################################################
# Referred to: https://github.com/zhanghang1989/PyTorch-Encoding
###########################################################################
import math
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel.data_parallel import DataParallel
from torch.nn.parallel.scatter_gather import scatter
import threading
import torch
from torch.cuda._utils import _get_device_index
from torch.cuda.amp import autocast
from torch._utils import ExceptionWrapper

up_kwargs = {'mode': 'bilinear', 'align_corners': True}

__all__ = ['MultiEvalModule']

class MultiEvalModule(DataParallel):
    """Multi-size Segmentation Eavluator"""
    def __init__(self, module, nclass, device_ids=None, flip=True,
                 scales=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]):
        super(MultiEvalModule, self).__init__(module, device_ids)
        self.nclass = nclass
        self.base_size = module.base_size
        self.crop_size = module.crop_size
        self.scales = scales
        self.flip = flip
        print('MultiEvalModule: base_size {}, crop_size {}'. \
            format(self.base_size, self.crop_size))

    def parallel_forward(self, inputs, **kwargs):
        """Multi-GPU Mult-size Evaluation

        Args:
            inputs: list of Tensors
        """
        inputs = [(input.unsqueeze(0).cuda(device),)
                  for input, device in zip(inputs, self.device_ids)]
        replicas = self.replicate(self, self.device_ids[:len(inputs)])
        kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
        if len(inputs) < len(kwargs):
            inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
        elif len(kwargs) < len(inputs):
            kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
        outputs = self.parallel_apply(replicas, inputs, kwargs)
        #for out in outputs:
        #    print('out.size()', out.size())
        return outputs

    def forward(self, image):
        """Mult-size Evaluation"""
        # only single image is supported for evaluation
        batch, _, h, w = image.size()
        assert(batch == 1)
        stride_rate = 2.0/3.0
        crop_size = self.crop_size
        stride = int(crop_size * stride_rate)
        with torch.cuda.device_of(image):
            scores = image.new().resize_(batch,self.nclass,h,w).zero_().cuda()

        for scale in self.scales:
            long_size = int(math.ceil(self.base_size * scale))
            if h > w:
                height = long_size
                width = int(1.0 * w * long_size / h + 0.5)
                short_size = width
            else:
                width = long_size
                height = int(1.0 * h * long_size / w + 0.5)
                short_size = height
            """
            short_size = int(math.ceil(self.base_size * scale))
            if h > w:
                width = short_size
                height = int(1.0 * h * short_size / w)
                long_size = height
            else:
                height = short_size
                width = int(1.0 * w * short_size / h)
                long_size = width
            """
            # resize image to current size
            cur_img = resize_image(image, height, width, **self.module._up_kwargs)
            if long_size <= crop_size:
                pad_img = pad_image(cur_img, self.module.mean,
                                    self.module.std, crop_size)
                outputs = module_inference(self.module, pad_img, self.flip)
                outputs = crop_image(outputs, 0, height, 0, width)
            else:
                if short_size < crop_size:
                    # pad if needed
                    pad_img = pad_image(cur_img, self.module.mean,
                                        self.module.std, crop_size)
                else:
                    pad_img = cur_img
                _,_,ph,pw = pad_img.size()
                assert(ph >= height and pw >= width)
                # grid forward and normalize
                h_grids = int(math.ceil(1.0 * (ph-crop_size)/stride)) + 1
                w_grids = int(math.ceil(1.0 * (pw-crop_size)/stride)) + 1
                with torch.cuda.device_of(image):
                    outputs = image.new().resize_(batch,self.nclass,ph,pw).zero_().cuda()
                    count_norm = image.new().resize_(batch,1,ph,pw).zero_().cuda()
                # grid evaluation
                for idh in range(h_grids):
                    for idw in range(w_grids):
                        h0 = idh * stride
                        w0 = idw * stride
                        h1 = min(h0 + crop_size, ph)
                        w1 = min(w0 + crop_size, pw)
                        crop_img = crop_image(pad_img, h0, h1, w0, w1)
                        # pad if needed
                        pad_crop_img = pad_image(crop_img, self.module.mean,
                                                 self.module.std, crop_size)
                        output = module_inference(self.module, pad_crop_img, self.flip)
                        outputs[:,:,h0:h1,w0:w1] += crop_image(output,
                            0, h1-h0, 0, w1-w0)
                        count_norm[:,:,h0:h1,w0:w1] += 1
                assert((count_norm==0).sum()==0)
                outputs = outputs / count_norm
                outputs = outputs[:,:,:height,:width]

            score = resize_image(outputs, h, w, **self.module._up_kwargs)
            scores += score

        return scores


def module_inference(module, image, flip=True):
    output = module.evaluate(image)
    if flip:
        fimg = flip_image(image)
        foutput = module.evaluate(fimg)
        output += flip_image(foutput)
    return output

def resize_image(img, h, w, **up_kwargs):
    return F.interpolate(img, (h, w), **up_kwargs)

def pad_image(img, mean, std, crop_size):
    b,c,h,w = img.size()
    assert(c==3)
    padh = crop_size - h if h < crop_size else 0
    padw = crop_size - w if w < crop_size else 0
    pad_values = -np.array(mean) / np.array(std)
    img_pad = img.new().resize_(b,c,h+padh,w+padw)
    for i in range(c):
        # note that pytorch pad params is in reversed orders
        img_pad[:,i,:,:] = F.pad(img[:,i,:,:], (0, padw, 0, padh), value=pad_values[i])
    assert(img_pad.size(2)>=crop_size and img_pad.size(3)>=crop_size)
    return img_pad

def crop_image(img, h0, h1, w0, w1):
    return img[:,:,h0:h1,w0:w1]

def flip_image(img):
    assert(img.dim()==4)
    with torch.cuda.device_of(img):
        idx = torch.arange(img.size(3)-1, -1, -1).type_as(img).long()
    return img.index_select(3, idx)