File size: 12,761 Bytes
498ffec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from abc import ABC, abstractmethod

from .action import ACTION_SPACE_PROMPT
from .eval_type import (
    GROUNDING,
    PROGRESS_LIKERT_SCALE,
    PROGRESS_THREE_CLASS,
    PROGRESS_WITH_CHECKLIST,
    PROGRESS_WITH_CHECKLIST_IN_PROGRESS,
    PROGRESS_OURS
)
from .input_information import (
    USER_INSTRUCTION,
    TRAJECTORY,
    AGENT_RESPONSE,
    CHECKLIST,
    CURRENT_URL,
    TEXT_OBSERVATION,
    SOM_IMAGE_OBSERVATION, 
    COORD_IMAGE_OBSERVATION
)
from .judge_prompt import (
    JUDGE_GROUNDING_PROMPT_TEMPLATE,
    JUDGE_LIKERT_SCALE_PROMPT_TEMPLATE,
    JUDGE_THREE_CLASS_PROMPT_TEMPLATE,
    JUDGE_WITH_CHECKLIST_PROMPT_TEMPLATE,
    JUDGE_OURS_PROMPT_TEMPLATE,
    JUDGE_OURS_WO_CHECKLIST_PROMPT_TEMPLATE
)
from .checklist_prompt import (
    CHECKLIST_SYSTEM_PROMPT,
    CHECKLIST_USER_PROMPT,
    CHECKLIST_OURS_SYSTEM_PROMPT,
    CHECKLIST_OURS_USER_PROMPT
)
from .image_utils import image_to_base64_url


class Message(ABC):    
    @abstractmethod
    def get_messages(self):
        pass

class BaseMessage(Message):
    def __init__(self, input_info:dict, use_multimodal:bool=False):
        self.input_info = input_info
        self.use_multimodal = use_multimodal

    def _get_system_message(self):
        system_message = {"role": "system", "content": "You are a helpful assistant."}
        return system_message
    
    def _process_multimodal_message(self, prompt: str, image_list: list[str]):
        multimodal_message = []
        text_prompt_prefix = prompt.split("<IMAGE_PLACEHOLDER>")[0]
        text_prompt_suffix = prompt.split("<IMAGE_PLACEHOLDER>")[1]
        multimodal_message.append({"type": "text", "text": text_prompt_prefix})
        for i, image in enumerate(image_list):
            # TODO: text prompt for multiple images
            # multimodal_message.append({"type": "text", "text": f"IMAGE {i+1}\n"})
            multimodal_message.append({"type": "image_url", "image_url": {"url": image_to_base64_url(image), "detail": "low"}})
        multimodal_message.append({"type": "text", "text": text_prompt_suffix})
        return {"role": "user", "content": multimodal_message}
    
    def _get_user_message(self):
        user_prompt = "What is the capital of France?"
        if self.use_multimodal:
            image_list = self.input_info.get("image_list", [])
            user_message = self._process_multimodal_message(user_prompt, image_list)
        else:
            user_message = {"role": "user", "content": user_prompt}
        return user_message

    def get_messages(self):
        message = []
        system_message = self._get_system_message()
        user_message = self._get_user_message()

        message.append(system_message)
        # message.append({"role": "system", "content": ""})
        message.append(user_message)
        return message
    

class ProgressMessage(BaseMessage):
    '''
    Progress Judge Message
    '''
    def __init__(self, input_info:dict, use_multimodal:bool, prompt_type:str, text_obs: str, image_obs: str, use_checklist:bool, use_in_progress:bool):
        super().__init__(input_info, use_multimodal)
        self.prompt_type = prompt_type
        self.text_obs = text_obs
        self.image_obs = image_obs
        self.use_checklist = use_checklist
        self.use_in_progress = use_in_progress
    
    def _get_system_message(self):
        if self.prompt_type == "likert_scale":
            system_message = {"role": "system", "content": JUDGE_LIKERT_SCALE_PROMPT_TEMPLATE["system"]}
        elif self.prompt_type == "three_class":
            system_message = {"role": "system", "content": JUDGE_THREE_CLASS_PROMPT_TEMPLATE["system"]}
        elif self.prompt_type == "with_checklist":
            system_message = {"role": "system", "content": JUDGE_WITH_CHECKLIST_PROMPT_TEMPLATE["system"]}
        elif self.prompt_type == "ours":
            system_message = {"role": "system", "content": JUDGE_OURS_PROMPT_TEMPLATE["system"]}
        else:
            raise ValueError(f"Invalid prompt type: {self.prompt_type}")
        return system_message
        
    def _setup_input_information(self):
        observation = "## Current State\n"

        observation += CURRENT_URL

        # text observation
        if self.text_obs:
            observation += TEXT_OBSERVATION
        
        # image observation (som, coord, none)
        if self.image_obs == "som":
            observation += SOM_IMAGE_OBSERVATION
        elif self.image_obs == "coord":
            observation += COORD_IMAGE_OBSERVATION


        if self.use_checklist:
            input_information = USER_INSTRUCTION + TRAJECTORY + observation + CHECKLIST + AGENT_RESPONSE
        else:
            input_information = USER_INSTRUCTION + TRAJECTORY + observation + AGENT_RESPONSE

        return input_information
    
    def _setup_task_info(self):
        if self.prompt_type == "likert_scale":
            task_description = PROGRESS_LIKERT_SCALE["task_description"]
            output_format = PROGRESS_LIKERT_SCALE["output_format"]
        elif self.prompt_type == "three_class":
            task_description = PROGRESS_THREE_CLASS["task_description"]
            output_format = PROGRESS_THREE_CLASS["output_format"]
        elif self.prompt_type == "with_checklist":
            if self.use_in_progress:
                task_description = PROGRESS_WITH_CHECKLIST_IN_PROGRESS["task_description"]
                output_format = PROGRESS_WITH_CHECKLIST_IN_PROGRESS["output_format"]
            else:
                task_description = PROGRESS_WITH_CHECKLIST["task_description"]
                output_format = PROGRESS_WITH_CHECKLIST["output_format"]
        else:
            raise ValueError(f"Invalid prompt type: {self.prompt_type}")
        return task_description, output_format
    
    def _get_user_prompt_template(self):
        if self.prompt_type == "likert_scale":
            user_prompt = JUDGE_LIKERT_SCALE_PROMPT_TEMPLATE["user"]
        elif self.prompt_type == "three_class":
            user_prompt = JUDGE_THREE_CLASS_PROMPT_TEMPLATE["user"]
        elif self.prompt_type == "with_checklist":
            user_prompt = JUDGE_WITH_CHECKLIST_PROMPT_TEMPLATE["user"]
        else:
            raise ValueError(f"Invalid prompt type: {self.prompt_type}")
        return user_prompt
    
    def _get_user_message(self):
        # setup input information (user_instruction, trajectory, current_state, agent_response, checklist)
        input_information_template = self._setup_input_information()
        input_information = input_information_template.format(**self.input_info)

        if self.prompt_type == "ours":
            if self.use_checklist:
                user_prompt = JUDGE_OURS_PROMPT_TEMPLATE["user"].format(
                    input_information=input_information,
                )
            else:
                user_prompt = JUDGE_OURS_WO_CHECKLIST_PROMPT_TEMPLATE["user"].format(
                    input_information=input_information,
                )
        else:
            task_description, output_format = self._setup_task_info()
            # get user prompt template by prompt type
            user_prompt_template = self._get_user_prompt_template()
            user_prompt = user_prompt_template.format(
                action_space=ACTION_SPACE_PROMPT,
                task_description=task_description,
                input_information=input_information,
                output_format=output_format
            )

        # process multimodal message
        if self.use_multimodal:
            image_list = self.input_info.get("image_list", [])
            user_message = self._process_multimodal_message(user_prompt, image_list)
        else:
            user_message = {"role": "user", "content": user_prompt}

        return user_message


class GroundingMessage(BaseMessage):
    '''
    Grounding Judge Message
    '''
    def __init__(self, input_info:dict, use_multimodal:bool, prompt_type:str, text_obs: str, image_obs: str):
        super().__init__(input_info, use_multimodal)
        self.prompt_type = prompt_type
        self.text_obs = text_obs
        self.image_obs = image_obs

    def _get_system_message(self):
        if self.prompt_type == "ours":
            # TODO: implement ours
            system_message = {"role": "system", "content": "You are a helpful assistant."}
        elif self.prompt_type == "default":
            system_message = {"role": "system", "content": JUDGE_GROUNDING_PROMPT_TEMPLATE["system"]}
        else:
            raise ValueError(f"Invalid prompt type: {self.prompt_type}")
        return system_message

    def _setup_input_information(self):
        observation = "## Current State\n"

        observation += CURRENT_URL

        # text observation
        if self.text_obs:
            observation += TEXT_OBSERVATION
        
        # image observation (som, coord, none)
        if self.image_obs == "som":
            observation += SOM_IMAGE_OBSERVATION
        elif self.image_obs == "coord":
            observation += COORD_IMAGE_OBSERVATION

        # input_information = USER_INSTRUCTION + TRAJECTORY + observation + AGENT_RESPONSE # with trajectory
        input_information = USER_INSTRUCTION + observation + AGENT_RESPONSE # without trajectory

        return input_information
    
    def _get_user_message(self):
        if self.prompt_type == "ours":
            # TODO: implement ours
            user_message = {"role": "user", "content": "TODO"}
        elif self.prompt_type == "default":
            action_space = ACTION_SPACE_PROMPT
            task_description = GROUNDING["task_description"]
            output_format = GROUNDING["output_format"]
            input_information_template = self._setup_input_information() 
            input_information = input_information_template.format(**self.input_info)

            user_prompt = JUDGE_GROUNDING_PROMPT_TEMPLATE["user"].format(
                action_space=action_space,
                task_description=task_description,
                input_information=input_information,
                output_format=output_format
            )

            # process multimodal message
            if self.use_multimodal:
                image_list = self.input_info.get("image_list", [])
                user_message = self._process_multimodal_message(user_prompt, image_list)
            else:
                user_message = {"role": "user", "content": user_prompt} 
        else:
            raise ValueError(f"Invalid prompt type: {self.prompt_type}")
        return user_message


class ChecklistMessage(BaseMessage):
    '''
    Checklist Message
    '''
    def __init__(self, input_info:dict, use_multimodal:bool, prompt_type:str):
        super().__init__(input_info, use_multimodal)
        self.prompt_type = prompt_type
    
    def _get_system_message(self):
        if self.prompt_type == "ours":
            # TODO: implement ours
            system_message = {"role": "system", "content": CHECKLIST_OURS_SYSTEM_PROMPT}
        elif self.prompt_type == "default":
            system_message = {"role": "system", "content": CHECKLIST_SYSTEM_PROMPT}
        else:
            raise ValueError(f"Invalid prompt type: {self.prompt_type}")
        return system_message
    
    def _get_user_message(self):
        if self.prompt_type == "ours":
            user_message = {"role": "user", "content": CHECKLIST_OURS_USER_PROMPT.format(**self.input_info)}
        elif self.prompt_type == "default":
            user_message = {"role": "user", "content": CHECKLIST_USER_PROMPT.format(**self.input_info)}
        else:
            raise ValueError(f"Invalid prompt type: {self.prompt_type}")
        return user_message
    

def get_messages(input_info:dict, inference_mode:str, prompt_type:str, text_obs:str=None, image_obs:str=None, use_multimodal:bool=False, use_checklist:bool=False, use_in_progress:bool=False):
    message_list = []
    if inference_mode == "judge_grounding":
        message = GroundingMessage(input_info, use_multimodal=use_multimodal, prompt_type=prompt_type, text_obs=text_obs, image_obs=image_obs)
    elif inference_mode == "judge_progress":
        message = ProgressMessage(input_info, use_multimodal=use_multimodal, prompt_type=prompt_type, text_obs=text_obs, image_obs=image_obs, use_checklist=use_checklist, use_in_progress=use_in_progress)
    elif inference_mode == "checklist_generation":
        message = ChecklistMessage(input_info, use_multimodal=False, prompt_type=prompt_type)
    else:
        raise ValueError(f"Invalid inference mode: {inference_mode}")
    
    system_message, user_message = message.get_messages()
    
    message_list.append(system_message)
    message_list.append(user_message)
    return message_list