File size: 4,302 Bytes
108ccb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

############################################################################
# Model: TTS with attention-based mechanism
# Tokens: g2p + possitional embeddings
# losses: MSE & BCE
# Training: LJSpeech
# ############################################################################

###################################
# Experiment Parameters and setup #
###################################
seed: 1234
__set_seed: !apply:torch.manual_seed [!ref <seed>]

# Folder set up
# output_folder: !ref .\\results\\tts\\<seed>
# save_folder: !ref <output_folder>\\save

output_folder: !ref ./results/<seed>
save_folder: !ref <output_folder>/save


################################
# Model Parameters and model   #
################################
# Input parameters
lexicon:
    - AA
    - AE
    - AH
    - AO
    - AW
    - AY
    - B
    - CH
    - D
    - DH
    - EH
    - ER
    - EY
    - F
    - G
    - HH
    - IH
    - IY
    - JH
    - K
    - L
    - M
    - N
    - NG
    - OW
    - OY
    - P
    - R
    - S
    - SH
    - T
    - TH
    - UH
    - UW
    - V
    - W
    - Y
    - Z
    - ZH

input_encoder: !new:speechbrain.dataio.encoder.TextEncoder



################################
# Model Parameters and model   #
# Transformer Parameters
################################
d_model: 512
nhead: 8
num_encoder_layers: 3
num_decoder_layers: 3
dim_feedforward: 512
dropout: 0.1


# Decoder parameters
# The number of frames in the target per encoder step
n_frames_per_step: 1
decoder_rnn_dim: 1024
prenet_dim: 256
max_decoder_steps: 1000
gate_threshold: 0.5
p_decoder_dropout: 0.1
decoder_no_early_stopping: False

blank_index: 0 # This special tokes is for padding


# Masks
lookahead_mask: !name:speechbrain.lobes.models.transformer.Transformer.get_lookahead_mask
padding_mask: !name:speechbrain.lobes.models.transformer.Transformer.get_key_padding_mask


################################
# CNN 3-layers Prenet          #
################################
# Encoder Prenet
encoder_prenet: !new:module_classes.CNNPrenet

# Decoder Prenet
decoder_prenet: !new:module_classes.CNNDecoderPrenet

################################
# Positional Encodings         #
################################

#encoder
pos_emb_enc: !new:module_classes.ScaledPositionalEncoding
    input_size: !ref <d_model>
    max_len: 5000

#decoder
pos_emb_dec: !new:module_classes.ScaledPositionalEncoding
    input_size: !ref <d_model>
    max_len: 5000


################################
# S2S Transfomer               #
################################

Seq2SeqTransformer: !new:torch.nn.Transformer
    d_model: !ref <d_model>
    nhead: !ref <nhead>
    num_encoder_layers: !ref <num_encoder_layers>
    num_decoder_layers: !ref <num_decoder_layers>
    dim_feedforward: !ref <dim_feedforward>
    dropout: !ref <dropout>
    batch_first: True


################################
# CNN 5-layers PostNet         #
################################

decoder_postnet: !new:speechbrain.lobes.models.Tacotron2.Postnet


# Linear transformation on the top of the decoder.
stop_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <d_model>
    n_neurons: 1


# Linear transformation on the top of the decoder.
mel_lin: !new:speechbrain.nnet.linear.Linear
    input_size: !ref <d_model>
    n_neurons: 80

modules:
    encoder_prenet: !ref <encoder_prenet>
    pos_emb_enc: !ref <pos_emb_enc>
    decoder_prenet: !ref <decoder_prenet>
    pos_emb_dec: !ref <pos_emb_dec>
    Seq2SeqTransformer: !ref <Seq2SeqTransformer>
    mel_lin: !ref <mel_lin>
    stop_lin: !ref <stop_lin>
    decoder_postnet: !ref <decoder_postnet>


model: !new:torch.nn.ModuleList
    - [!ref <encoder_prenet>,!ref <pos_emb_enc>,
       !ref <decoder_prenet>, !ref <pos_emb_dec>, !ref <Seq2SeqTransformer>,
       !ref <mel_lin>, !ref <stop_lin>,  !ref <decoder_postnet>]


pretrained_model_path: ./model.ckpt

# The pretrainer allows a mapping between pretrained files and instances that
# are declared in the yaml. E.g here, we will download the file model.ckpt
# and it will be loaded into "model" which is pointing to the <model> defined
# before.

pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
   collect_in: !ref <save_folder>
   loadables:
      model: !ref <model>
   paths:
      model: !ref <pretrained_model_path>