Spaces:
Sleeping
Sleeping
File size: 2,184 Bytes
f39f2e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import streamlit as st
from langchain_community.chat_models import ChatOpenAI
from langchain_community.callbacks import get_openai_callback
from langchain.chains.question_answering import load_qa_chain
from utils.process_data import process_text, pdf_to_text
MODEL = st.secrets["MODEL4"]
st.set_page_config(page_title="Summarizer with LLM QA", page_icon="βοΈ")
st.title("Summarize Text")
st.subheader("π π LLM/Question Answering")
maxw = st.slider('MAX words', 50, 1000, step=10, value=200)
minw = st.slider('MIN words', 10, 500, step=10, value=50)
sentence = st.text_area('Please paste your article:', height=50)
button = st.button("Summarize")
query = f"Summarize the content of the uploaded PDF file in more that {minw} words and less than {maxw} words. Focus on capturing the main ideas and key points discussed in the document. Use your own words and ensure clarity and coherence in the summary."
with st.spinner("Generating Summary.."):
if button and sentence:
knowledgeBase = process_text(sentence)
docs = knowledgeBase.similarity_search(query)
llm = ChatOpenAI(model=MODEL, temperature=0.1, openai_api_key=st.secrets["OPENAI_API_KEY"])
chain = load_qa_chain(llm, chain_type='stuff')
with get_openai_callback() as cost:
response = chain.run(input_documents=docs, question=query)
print(cost)
st.subheader('Summary Results:')
st.write(response)
st.divider()
st.subheader('ππ Summarize PDF')
pdf_path = st.file_uploader('Upload your PDF Document', type='pdf')
button2 = st.button("Summarize PDF")
if pdf_path is not None and button2:
text = pdf_to_text(pdf_path)
knowledgeBase = process_text(text)
with st.spinner("Generating PDF Summary.."):
docs = knowledgeBase.similarity_search(query)
llm = ChatOpenAI(model=MODEL, temperature=0.1, openai_api_key=st.secrets["OPENAI_API_KEY"])
chain = load_qa_chain(llm, chain_type='stuff')
with get_openai_callback() as cost:
response2 = chain.run(input_documents=docs, question=query)
print(cost)
st.subheader('Summary Results:')
st.write(response2) |