Spaces:
Paused
Paused
File size: 5,535 Bytes
480ed39 8c91b48 480ed39 ba37a67 480ed39 3ee4cf4 480ed39 c8f0f85 480ed39 c8f0f85 316872d ba37a67 b400f3a 480ed39 39884f7 defcb0d 480ed39 be16b69 480ed39 6390664 480ed39 6e1757f 480ed39 1b19198 ba37a67 1b19198 b400f3a ba37a67 480ed39 0358cfb 480ed39 be16b69 b400f3a 1b19198 b400f3a 1b19198 ba37a67 39884f7 8e118a7 b65afb4 b400f3a 1b19198 b400f3a 37aa35d ba37a67 cd7d65e ba37a67 d906a23 6e1757f 37aa35d cd7d65e b65afb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
from io import BytesIO
import torch
import numpy as np
from PIL import Image
from einops import rearrange
from torch import autocast
from contextlib import nullcontext
import requests
import functools
import random
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.extras import load_model_from_config, load_training_dir
import clip
from PIL import Image
from fastai.vision.all import *
import skimage
from huggingface_hub import hf_hub_download
ckpt = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-pruned.ckpt", cache_dir="/data/.cache")
config = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-config.yaml", cache_dir="/data/.cache")
device = "cuda:0"
model = load_model_from_config(config, ckpt, device=device, verbose=False)
model = model.to(device).half()
clip_model, preprocess = clip.load("ViT-L/14", device=device)
gender_learn = load_learner('gender_model.pkl')
gender_labels = gender_learn.dls.vocab
beard_learn = load_learner('facial_hair_model.pkl')
beard_labels = beard_learn.dls.vocab
n_inputs = 5
torch.cuda.empty_cache()
@functools.lru_cache()
def get_url_im(t):
user_agent = {'User-agent': 'gradio-app'}
response = requests.get(t, headers=user_agent)
return Image.open(BytesIO(response.content))
@torch.no_grad()
def get_im_c(im, clip_model):
prompts = preprocess(im).to(device).unsqueeze(0)
return clip_model.encode_image(prompts).float()
@torch.no_grad()
def get_txt_c(txt, clip_model):
text = clip.tokenize([txt,]).to(device)
return clip_model.encode_text(text)
def get_txt_diff(txt1, txt2, clip_model):
return get_txt_c(txt1, clip_model) - get_txt_c(txt2, clip_model)
def to_im_list(x_samples_ddim):
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
ims = []
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
ims.append(Image.fromarray(x_sample.astype(np.uint8)))
return ims
@torch.no_grad()
def sample(sampler, model, c, uc, scale, start_code, h=512, w=512, precision="autocast",ddim_steps=50):
ddim_eta=0.0
precision_scope = autocast if precision=="autocast" else nullcontext
with precision_scope("cuda"):
shape = [4, h // 8, w // 8]
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=start_code)
x_samples_ddim = model.decode_first_stage(samples_ddim)
return to_im_list(x_samples_ddim)
def run_image_mixer(args):
inps = []
for i in range(0, len(args)-4, n_inputs):
inps.append(args[i:i+n_inputs])
scale, n_samples, seed, steps = args[-4:]
h = w = 640
sampler = DDIMSampler(model)
# sampler = PLMSSampler(model)
torch.manual_seed(seed)
start_code = torch.randn(n_samples, 4, h//8, w//8, device=device)
conds = []
for b, t, im, s in zip(*inps):
print(b, t, im, s)
if b == "Image":
this_cond = s*get_im_c(im, clip_model)
elif b == "Text/URL":
if t.startswith("http"):
im = get_url_im(t)
this_cond = s*get_im_c(im, clip_model)
else:
this_cond = s*get_txt_c(t, clip_model)
else:
this_cond = torch.zeros((1, 768), device=device)
conds.append(this_cond)
conds = torch.cat(conds, dim=0).unsqueeze(0)
conds = conds.tile(n_samples, 1, 1)
ims = sample(sampler, model, conds, 0*conds, scale, start_code, ddim_steps=steps)
# return make_row(ims)
# Clear GPU memory cache so less likely to OOM
torch.cuda.empty_cache()
return ims[0]
def is_female(img):
pred,pred_idx,probs = gender_learn.predict(img)
return float(probs[0]) > float(probs[1])
def has_beard(img):
pred,pred_idx,probs = beard_learn.predict(img)
return float(probs[0]) > float(probs[1])
import gradio
def boutsify(person):
portrait_path = "bouts_m1.jpg"
female_detected = is_female(person)
if female_detected:
print("This is a female portrait")
portrait_path = "bouts_f1.jpg"
else:
print("This is a male portrait")
if has_beard(person):
print("The person has a beard")
portrait_path = "bouts_mb1.jpg"
person_image = Image.fromarray(person)
inputs = [
"Image", "Image", "Image", "Image", "Nothing",
"","","","","",
Image.open(portrait_path).convert("RGB"),
Image.open("boutsback_o1.png").convert("RGB"),
Image.open("boutsback_o2.png").convert("RGB"),
person_image,
"",
1.1,1,1,1.4,1,
3.0, 1, random.randrange(0, 10000), 50,
]
return run_image_mixer(inputs)
gradio_interface = gradio.Interface(
fn=boutsify,
inputs="image",
outputs="image",
title="Boutsify images",
description="Turn portraits into a painting in the style of Flemish master Dirck Bouts",
article="© iO Digital"
)
gradio_interface.launch()
|