File size: 14,144 Bytes
a2fd99a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import numpy as np
from typing import Dict, List, Optional
import json
from datetime import datetime, timedelta
class TreatmentPlanner:
def __init__(self):
self.treatment_protocols = self._load_treatment_protocols()
self.intervention_strategies = self._load_intervention_strategies()
def _load_treatment_protocols(self) -> Dict:
"""Load predefined treatment protocols"""
return {
'depression': {
'psychotherapy': {
'primary': 'Cognitive Behavioral Therapy (CBT)',
'alternatives': [
'Interpersonal Therapy (IPT)',
'Behavioral Activation (BA)',
'Mindfulness-Based Cognitive Therapy (MBCT)'
],
'duration': '12-16 weeks',
'frequency': 'Weekly'
},
'medication': {
'classes': [
'SSRIs',
'SNRIs',
'NDRIs',
'Atypical antidepressants'
],
'duration': '6-12 months minimum',
'monitoring': 'Every 2-4 weeks initially'
},
'lifestyle': [
'Regular exercise (30 minutes daily)',
'Sleep hygiene improvement',
'Social engagement activities',
'Stress reduction techniques'
]
},
'anxiety': {
'psychotherapy': {
'primary': 'Cognitive Behavioral Therapy (CBT)',
'alternatives': [
'Exposure Therapy',
'Acceptance and Commitment Therapy (ACT)',
'Dialectical Behavior Therapy (DBT)'
],
'duration': '8-12 weeks',
'frequency': 'Weekly'
},
'medication': {
'classes': [
'SSRIs',
'SNRIs',
'Buspirone',
'Beta-blockers'
],
'duration': 'As needed',
'monitoring': 'Every 2-4 weeks initially'
},
'lifestyle': [
'Relaxation techniques',
'Mindfulness meditation',
'Regular exercise',
'Stress management'
]
},
'ptsd': {
'psychotherapy': {
'primary': 'Trauma-Focused CBT',
'alternatives': [
'EMDR',
'Prolonged Exposure Therapy',
'Cognitive Processing Therapy'
],
'duration': '12-16 weeks',
'frequency': 'Weekly'
},
'medication': {
'classes': [
'SSRIs',
'SNRIs',
'Prazosin',
'Antipsychotics'
],
'duration': '12 months minimum',
'monitoring': 'Every 2-4 weeks initially'
},
'lifestyle': [
'Stress management techniques',
'Sleep hygiene',
'Grounding exercises',
'Social support engagement'
]
}
}
def _load_intervention_strategies(self) -> Dict:
"""Load intervention strategies based on severity and symptoms"""
return {
'mild': {
'focus': 'Lifestyle modifications and psychoeducation',
'monitoring': 'Monthly check-ins',
'escalation_criteria': [
'Symptom worsening',
'Functional impairment',
'Lack of improvement after 4-6 weeks'
]
},
'moderate': {
'focus': 'Psychotherapy with optional medication',
'monitoring': 'Bi-weekly check-ins',
'escalation_criteria': [
'Severe symptom exacerbation',
'Development of risk factors',
'Poor response to treatment'
]
},
'severe': {
'focus': 'Intensive treatment with medication and therapy',
'monitoring': 'Weekly check-ins',
'escalation_criteria': [
'Crisis development',
'Safety concerns',
'Treatment resistance'
]
}
}
def generate_plan(self, analysis_results: Dict) -> Dict:
"""Generate a comprehensive treatment plan based on analysis results"""
try:
# Extract relevant information from analysis
conditions = analysis_results['condition_probabilities']
severity = analysis_results['severity_assessment']
# Generate treatment plan components
treatment_plan = {
'summary': self._generate_plan_summary(conditions, severity),
'primary_interventions': self._select_primary_interventions(
conditions, severity
),
'therapy_recommendations': self._generate_therapy_recommendations(
conditions, severity
),
'medication_considerations': self._generate_medication_recommendations(
conditions, severity
),
'lifestyle_modifications': self._generate_lifestyle_recommendations(
conditions
),
'monitoring_plan': self._create_monitoring_plan(severity),
'crisis_plan': self._create_crisis_plan(severity),
'timeline': self._create_treatment_timeline(
conditions, severity
)
}
return treatment_plan
except Exception as e:
return {
'error': f'Error generating treatment plan: {str(e)}',
'recommendations': self._generate_fallback_recommendations()
}
def _generate_plan_summary(
self, conditions: Dict, severity: Dict
) -> Dict:
"""Generate a summary of the treatment plan"""
primary_condition = max(conditions.items(), key=lambda x: x[1])[0]
severity_level = self._determine_severity_level(severity['overall_severity'])
return {
'primary_condition': primary_condition,
'severity_level': severity_level,
'treatment_approach': self.intervention_strategies[severity_level]['focus'],
'estimated_duration': self._estimate_treatment_duration(
primary_condition, severity_level
)
}
def _select_primary_interventions(
self, conditions: Dict, severity: Dict
) -> List[str]:
"""Select primary interventions based on conditions and severity"""
interventions = []
severity_level = self._determine_severity_level(severity['overall_severity'])
for condition, probability in conditions.items():
if probability > 0.4: # Consider conditions with significant probability
protocol = self.treatment_protocols[condition]
# Add primary therapy
interventions.append(
f"Primary therapy: {protocol['psychotherapy']['primary']}"
)
# Add medication if moderate to severe
if severity_level in ['moderate', 'severe']:
interventions.append(
f"Consider medication: {', '.join(protocol['medication']['classes'][:2])}"
)
return interventions
def _generate_therapy_recommendations(
self, conditions: Dict, severity: Dict
) -> Dict:
"""Generate specific therapy recommendations"""
therapy_plan = {}
severity_level = self._determine_severity_level(severity['overall_severity'])
for condition, probability in conditions.items():
if probability > 0.3:
protocol = self.treatment_protocols[condition]['psychotherapy']
therapy_plan[condition] = {
'primary_therapy': protocol['primary'],
'alternatives': protocol['alternatives'][:2],
'frequency': protocol['frequency'],
'duration': protocol['duration']
}
return therapy_plan
def _generate_medication_recommendations(
self, conditions: Dict, severity: Dict
) -> Dict:
"""Generate medication recommendations"""
medication_plan = {}
severity_level = self._determine_severity_level(severity['overall_severity'])
if severity_level in ['moderate', 'severe']:
for condition, probability in conditions.items():
if probability > 0.4:
protocol = self.treatment_protocols[condition]['medication']
medication_plan[condition] = {
'recommended_classes': protocol['classes'][:2],
'duration': protocol['duration'],
'monitoring': protocol['monitoring']
}
return medication_plan
def _generate_lifestyle_recommendations(self, conditions: Dict) -> List[str]:
"""Generate lifestyle modification recommendations"""
recommendations = set()
for condition, probability in conditions.items():
if probability > 0.3:
recommendations.update(
self.treatment_protocols[condition]['lifestyle']
)
return list(recommendations)
def _create_monitoring_plan(self, severity: Dict) -> Dict:
"""Create a monitoring plan based on severity"""
severity_level = self._determine_severity_level(severity['overall_severity'])
strategy = self.intervention_strategies[severity_level]
return {
'frequency': strategy['monitoring'],
'focus_areas': [
'Symptom severity',
'Treatment response',
'Side effects',
'Functional improvement'
],
'escalation_criteria': strategy['escalation_criteria']
}
def _create_crisis_plan(self, severity: Dict) -> Dict:
"""Create a crisis intervention plan"""
return {
'warning_signs': [
'Suicidal ideation',
'Severe anxiety attacks',
'Dissociative episodes',
'Severe mood changes'
],
'emergency_contacts': [
'Primary therapist',
'Crisis hotline',
'Emergency services (911)',
'Trusted support person'
],
'immediate_actions': [
'Contact emergency services if in immediate danger',
'Use prescribed crisis medication if available',
'Apply learned coping strategies',
'Reach out to support system'
]
}
def _create_treatment_timeline(
self, conditions: Dict, severity: Dict
) -> List[Dict]:
"""Create a timeline for treatment implementation"""
timeline = []
start_date = datetime.now()
# Initial phase
timeline.append({
'phase': 'Initial Assessment and Stabilization',
'duration': '1-2 weeks',
'start_date': start_date.strftime('%Y-%m-%d'),
'focus': 'Assessment and immediate interventions'
})
# Acute phase
acute_start = start_date + timedelta(weeks=2)
timeline.append({
'phase': 'Acute Treatment',
'duration': '8-12 weeks',
'start_date': acute_start.strftime('%Y-%m-%d'),
'focus': 'Primary interventions and symptom reduction'
})
# Continuation phase
continuation_start = acute_start + timedelta(weeks=12)
timeline.append({
'phase': 'Continuation',
'duration': '4-6 months',
'start_date': continuation_start.strftime('%Y-%m-%d'),
'focus': 'Maintaining improvements and preventing relapse'
})
return timeline
def _determine_severity_level(self, severity_score: float) -> str:
"""Determine severity level from score"""
if severity_score > 0.7:
return 'severe'
elif severity_score > 0.4:
return 'moderate'
else:
return 'mild'
def _estimate_treatment_duration(
self, condition: str, severity_level: str
) -> str:
"""Estimate treatment duration based on condition and severity"""
base_duration = {
'mild': 3,
'moderate': 6,
'severe': 12
}
months = base_duration[severity_level]
return f"{months}-{months+3} months"
def _generate_fallback_recommendations(self) -> List[str]:
"""Generate basic recommendations when full plan generation fails"""
return [
"Seek professional mental health evaluation",
"Consider psychotherapy",
"Maintain regular sleep schedule",
"Practice stress management techniques",
"Engage in regular physical activity",
"Build and maintain social support network"
] |