Spaces:
Sleeping
Sleeping
File size: 8,938 Bytes
aa36c04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# Thanks to the following repos:
# https://huggingface.co/spaces/An-619/FastSAM/blob/main/app_gradio.py
# https://huggingface.co/spaces/SkalskiP/EfficientSAM
from typing import Tuple
from ultralytics import YOLO
from PIL import ImageDraw
from PIL import Image
import gradio as gr
import numpy as np
import torch
from transformers import SamModel, SamProcessor
import supervision as sv
from utils.tools_gradio import fast_process
from utils.tools import format_results, point_prompt
from utils.draw import draw_circle, calculate_dynamic_circle_radius
from utils.efficient_sam import load, inference_with_box, inference_with_point
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the pre-trained models
FASTSAM_MODEL = YOLO('FastSAM-s.pt')
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
EFFICIENT_SAM_MODEL = load(device=DEVICE)
MASK_COLOR = sv.Color.from_hex("#FF0000")
PROMPT_COLOR = sv.Color.from_hex("#D3D3D3")
MASK_ANNOTATOR = sv.MaskAnnotator(
color=MASK_COLOR,
color_lookup=sv.ColorLookup.INDEX)
title = "<center><strong><font size='8'>🤗 Segment Anything Model Arena ⚔️</font></strong></center>"
description = "<center><font size='4'>This is a demo of the <strong>Segment Anything Model Arena</strong>, a collection of models for segmenting anything. "
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
#examples = [["examples/retail01.png"], ["examples/vend01.png"], ["examples/vend02.png"]]
POINT_EXAMPLES = [
['https://media.roboflow.com/efficient-sam/corgi.jpg', 1291, 751],
['https://media.roboflow.com/efficient-sam/horses.jpg', 1168, 939],
['https://media.roboflow.com/efficient-sam/bears.jpg', 913, 1051]
]
#default_example = examples[0]
def annotate_image_with_point_prompt_result(
image: np.ndarray,
detections: sv.Detections,
x: int,
y: int
) -> np.ndarray:
h, w, _ = image.shape
bgr_image = image[:, :, ::-1]
annotated_bgr_image = MASK_ANNOTATOR.annotate(
scene=bgr_image, detections=detections)
annotated_bgr_image = draw_circle(
scene=annotated_bgr_image,
center=sv.Point(x=x, y=y),
radius=calculate_dynamic_circle_radius(resolution_wh=(w, h)),
color=PROMPT_COLOR)
return annotated_bgr_image[:, :, ::-1]
def SAM_points_inference(image: np.ndarray) -> np.ndarray:
global global_points
input_points = [[[float(num) for num in sublist]] for sublist in global_points]
print(input_points)
#input_points = [[[773.0, 167.0]]]
x = int(input_points[0][0][0])
y = int(input_points[0][0][1])
inputs = SAM_PROCESSOR(
Image.fromarray(image),
input_points=[input_points],
return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
outputs = SAM_MODEL(**inputs)
mask = SAM_PROCESSOR.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
mask = mask[np.newaxis, ...]
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
return annotate_image_with_point_prompt_result(
image=image, detections=detections, x=x, y=y)
def FastSAM_points_inference(
input,
input_size=1024,
iou_threshold=0.7,
conf_threshold=0.25,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
global global_points
global global_point_label
input = Image.fromarray(input)
input_size = int(input_size) # 确保 imgsz 是整数
# Thanks for the suggestion by hysts in HuggingFace.
w, h = input.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
input = input.resize((new_w, new_h))
scaled_points = [[int(x * scale) for x in point] for point in global_points]
results = FASTSAM_MODEL(input,
device=DEVICE,
retina_masks=True,
iou=iou_threshold,
conf=conf_threshold,
imgsz=input_size,)
results = format_results(results[0], 0)
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
annotations = np.array([annotations])
fig = fast_process(annotations=annotations,
image=input,
device=DEVICE,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,)
global_points = []
global_point_label = []
return fig
def EfficientSAM_points_inference(image: np.ndarray):
x, y = int(global_points[0][0]), int(global_points[0][1])
point = np.array([[int(x), int(y)]])
mask = inference_with_point(image, point, EFFICIENT_SAM_MODEL, DEVICE)
mask = mask[np.newaxis, ...]
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
return annotate_image_with_point_prompt_result(image=image, detections=detections, x=x, y=y)
def get_points_with_draw(image, label, evt: gr.SelectData):
global global_points
global global_point_label
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 15, (255, 0, 0) if label == 'Add Mask' else (255, 0, 255)
global_points.append([x, y])
global_point_label.append(1 if label == 'Add Mask' else 0)
print(x, y, label == 'Add Mask')
image = Image.fromarray(image)
draw = ImageDraw.Draw(image)
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
return image
def clear(_: np.ndarray) -> Tuple[None, None, None, None]:
return None, None, None, None
gr_input_image = gr.Image(label="Input", value='examples/fruits.jpg')
fast_sam_segmented_image = gr.Image(label="Fast SAM", interactive=False, type='pil')
edge_sam_segmented_imaged = gr.Image(label="Edge SAM", interactive=False, type='pil')
global_points = []
global_point_label = []
with gr.Blocks() as demo:
with gr.Tab("Points prompt"):
# Input Image
with gr.Row(variant="panel"):
with gr.Column(scale=1, min_width="320", variant="compact"):
gr_input_image.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point label (foreground/background)")
with gr.Column():
inference_point_button = gr.Button("Segment", variant='primary')
clear_button = gr.Button("Clear points", variant='secondary')
# Segment Results Grid
with gr.Row(variant="panel"):
with gr.Column(scale=1):
sam_segmented_image = gr.Image(label="SAM")
with gr.Column(scale=1):
efficient_sam_segmented_image = gr.Image(label="Efficient SAM")
with gr.Row(variant="panel"):
with gr.Column(scale=1):
fast_sam_segmented_image.render()
with gr.Column(scale=1):
edge_sam_segmented_imaged.render()
gr.Markdown("AI Generated Examples")
# gr.Examples(examples=examples,
# inputs=[gr_input_image],
# # outputs=sam_segmented_image,
# # fn=segment_with_points,
# # cache_examples=True,
# examples_per_page=3)
gr_input_image.select(get_points_with_draw, [gr_input_image, add_or_remove], gr_input_image)
inference_point_button.click(
SAM_points_inference,
inputs=[gr_input_image],
outputs=[sam_segmented_image]
)
inference_point_button.click(
EfficientSAM_points_inference,
inputs=[gr_input_image],
outputs=[efficient_sam_segmented_image])
inference_point_button.click(
FastSAM_points_inference,
inputs=[gr_input_image],
outputs=[fast_sam_segmented_image])
# inference_point_button.click(
# EdgeSAM_points_inference,
# inputs=[gr_input_image],
# outputs=[fast_sam_segmented_image, gr_input_image])
gr_input_image.change(
clear,
inputs=gr_input_image,
outputs=[efficient_sam_segmented_image, sam_segmented_image, fast_sam_segmented_image]
)
clear_button.click(clear, outputs=[gr_input_image, efficient_sam_segmented_image, sam_segmented_image, fast_sam_segmented_image])
demo.queue()
demo.launch(debug=True, show_error=True) |