File size: 9,473 Bytes
13c8e0f
6eed986
 
5a99733
6eed986
13c8e0f
f757ba6
13c8e0f
a6e1323
31b8b6f
c6ff19b
9a95e09
4dc2082
c1c1b7e
be9b691
c1c1b7e
5a99733
 
 
 
 
4dc2082
f757ba6
7da74a7
f757ba6
a6e1323
 
f757ba6
6eed986
f757ba6
a6e1323
f757ba6
 
 
 
6eed986
a6e1323
6eed986
 
f757ba6
 
5a99733
a6e1323
 
6eed986
f757ba6
 
6eed986
 
 
f757ba6
 
 
 
 
 
6eed986
 
 
f757ba6
 
6eed986
 
 
 
 
 
f757ba6
6eed986
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
f757ba6
 
6eed986
 
f757ba6
 
 
 
 
 
 
 
6eed986
 
 
f757ba6
 
 
6eed986
 
 
 
 
 
f757ba6
6eed986
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
 
 
 
 
 
 
2bc433a
7da74a7
179f2c8
85e8973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bc433a
7da6d10
2bc433a
dc884c4
85e8973
8bf2dd6
85e8973
dc884c4
578d2af
 
2bc433a
4dc2082
 
 
 
578d2af
7da6d10
8bf2dd6
4dc2082
f9d4718
 
 
 
 
 
4dc2082
f9d4718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc2082
7da74a7
4dc2082
6eed986
f9d4718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419cc7b
8bf2dd6
6eed986
 
f757ba6
6eed986
6b46211
2a563da
f757ba6
8b249e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
from llm_call import GeminiLLM
from seminar_edition_ai import upload_file_ex, predictContemplando, predictProclamando, predictFromInit, \
    downloadSermonFile, fileAddresToDownload, predictQuestionBuild, predictDevotionBuild, predictArgumentQuestionBuild, \
    contemplandoQuestion, proclamandoQuestion, llm, embed_model

HISTORY_ANSWER = ''

llmModel = None
def activeSermonGuideZone(KEY):
    #print("Button show " + buttonEvent.label)
    return {text_button: gr.update (interactive = True), question_option: [KEY]}

def showMessage(questionAnswer, KEY):
    if questionAnswer == None or questionAnswer == '' or len(questionAnswer) <= 7:
      raise gr.Error(f"You must write some answer or more longer {KEY}")
    else:
        try:
          return predictArgumentQuestionBuild(questionAnswer)
        except Exception as e:
            raise gr.Error(f" Error on call AI  {e}!!!")

with gr.Blocks() as demo:

    gr.Markdown("SermonLab AI Demo.")

    llmModelState = gr.State([llmModel])
    with gr.Tab("Preparando mi Serm贸n"):
        text_input = gr.Textbox(label="T贸pico del serm贸n")

        text_output = gr.Textbox(label="Respuesta", lines = 10)

        text_button = gr.Button("Crear")

        text_download = gr.DownloadButton(
            label="Descargar",
            value = fileAddresToDownload,
            every=10
        )

        text_button.click(
            fn = predictFromInit,
            inputs =[ text_input, llmModelState],
            outputs = text_output
        )

        text_download.click(
            fn=downloadSermonFile,
            inputs=text_output
        )
    with gr.Tab("Obtener gu铆a de la comunidad (Preguntas)"):
        with gr.Row():
            #Bibliografy about components
            # File (https://www.gradio.app/docs/gradio/file)
            # Download Button (https://www.gradio.app/docs/gradio/downloadbutton)
            with gr.Column():
                file_input_question = gr.File()
                upload_button_question = gr.UploadButton("Click to Upload a File", file_types=['.pdf'],
                                                         file_count="multiple")
            with gr.Column():
                temp_slider_question = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=1,
                    step=1,
                    interactive=True,
                    label="Preguntas",
                )
                text_output_question = gr.Textbox(label="Respuesta", lines=10)
        text_button_question = gr.Button("Crear gu铆a de preguntas")
        text_download_question = gr.DownloadButton(
            label="Descargar",
            value=fileAddresToDownload,
            every=10
        )

        text_button_question.click(
            fn=predictQuestionBuild,
            outputs=text_output_question
        )

        upload_button_question.upload(upload_file_ex, inputs=upload_button_question,
                                      outputs=[file_input_question, text_output_question])

    with gr.Tab("Obtener gu铆a de la comunidad (Devocionario)"):
        with gr.Row():
            #Bibliografy about components
            # File (https://www.gradio.app/docs/gradio/file)
            # Download Button (https://www.gradio.app/docs/gradio/downloadbutton)

            with gr.Column():
                file_input_devotions = gr.File()
                upload_button_devotion = gr.UploadButton("Click to Upload a File", file_types=['.pdf'],
                                                         file_count="multiple")

            with gr.Column():
                temp_slider_question = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=1,
                    step=1,
                    interactive=True,
                    label="Cantidad",
                )
                text_output_devotions = gr.Textbox(label="Respuesta", lines=10)
        text_button_devotion = gr.Button("Crear")
        text_download_question = gr.DownloadButton(
            label="Descargar",
            value=fileAddresToDownload,
            every=10
        )

        text_button_devotion.click(
            fn=predictDevotionBuild,
            outputs=text_output_devotions
        )

        upload_button_devotion.upload(
            upload_file_ex,
            inputs=upload_button_devotion,
            outputs=
            [file_input_devotions, text_output_devotions]
        )
    with gr.Tab("Contemplando y Proclamando (Gu铆a de preguntas)"):
        question_option = gr.State([])
        with gr.Accordion("Contemplando y Proclamando", open = False):
            checkButton = gr.Checkbox(
                value=False,
                label="Mantener historial"
            )
            with gr.Row():
                with gr.Tab("Contemplando"):
                    inbtwContemplando = gr.Button(f"Devocionalmente: {contemplandoQuestion['DEVOCIONALMENTE']}")
                    inbtwContemplandoOne = gr.Button(f"Ex茅gesis: {contemplandoQuestion['EX脡GESIS']}")
                    inbtwContemplandoTwo = gr.Button(f"Cristo: {contemplandoQuestion['CRISTO']}")
                    inbtwContemplandoTree = gr.Button(f"Arco Redentor: {contemplandoQuestion['ARCO REDENTOR']}")
                    inbtwContemplandoFour = gr.Button(f"Evangeli贸n: {contemplandoQuestion['EVANGELION']}")
                    inbtwContemplandoFourOne = gr.Button(f"Evangeli贸n: {contemplandoQuestion['EVANGELION_TWO']}")

                with gr.Tab("Proclamando"):
                    inbtwProclamando = gr.Button(f"P煤blico: {proclamandoQuestion['P脷BLICO']}")
                    inbtwProclamandoOne = gr.Button(f"Historia: {proclamandoQuestion['HISTORIA']}")
                    inbtwProclamandoTwo = gr.Button(f"Expectativas: {proclamandoQuestion['EXPECTATIVAS']}")
                    inbtwProclamandoTwoTwo = gr.Button(f"Expectativas: {proclamandoQuestion['EXPECTATIVAS_TWO']}")
        with gr.Row():
            with gr.Column(scale = 2):
                #Answer for Contemplando y Proclamando questions


                text_output_guia = gr.Textbox(label="Respuesta", lines = 10)


            with gr.Column(scale = 1, min_width = 200):
                text1 = gr.Textbox(visible = False)
                #Button for calling AI Help
                text_button = gr.Button("Buscar m谩s informaci贸n (IA)",
                                        min_width = 200,
                                        interactive = False
                                    )
                text2 = gr.Textbox(visible = False)
            with gr.Column(scale = 2):
                text_output_aiAnswer = gr.Textbox(label="Ayuda a mi respuesta", lines = 10)

        inbtwContemplando.click(
            fn = lambda x: activeSermonGuideZone(contemplandoQuestion['DEVOCIONALMENTE']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )

        inbtwContemplandoOne.click(
            fn = lambda x: activeSermonGuideZone(contemplandoQuestion['EX脡GESIS']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )

        inbtwContemplandoTwo.click(
            fn = lambda x: activeSermonGuideZone(contemplandoQuestion['CRISTO']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )

        inbtwContemplandoTree.click(
            fn = lambda x: activeSermonGuideZone(contemplandoQuestion['ARCO REDENTOR']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )

        inbtwContemplandoFour.click(
            fn = lambda x: activeSermonGuideZone(contemplandoQuestion['EVANGELION']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )

        inbtwContemplandoFourOne.click(
            fn = lambda x: activeSermonGuideZone(contemplandoQuestion['EVANGELION_TWO']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )

        #####---------------------------------------------------------------------------------------------------------
        inbtwProclamando.click(
            fn = lambda x: activeSermonGuideZone(proclamandoQuestion['P脷BLICO']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )


        inbtwProclamandoOne.click(
            fn = lambda x: activeSermonGuideZone(proclamandoQuestion['HISTORIA']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )

        inbtwProclamandoTwo.click(
            fn = lambda x: activeSermonGuideZone(proclamandoQuestion['EXPECTATIVAS']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )

        inbtwProclamandoTwoTwo.click(
            fn = lambda x: activeSermonGuideZone(proclamandoQuestion['EXPECTATIVAS_TWO']),
            inputs = inbtwContemplandoOne,
            outputs = [text_button, question_option]
        )


        text_button.click(fn = showMessage, inputs = [text_output_guia, question_option], outputs = text_output_aiAnswer)

if __name__ == "__main__":
    llmBuilder = GeminiLLM()

    embed_model = llmBuilder.getEmbeddingsModel()
    #global llmModel


    demo.launch(share=True)