File size: 7,204 Bytes
13c8e0f
6eed986
 
 
 
13c8e0f
f757ba6
13c8e0f
f757ba6
 
 
6eed986
f757ba6
 
6eed986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757ba6
 
 
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
 
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
f757ba6
 
 
 
 
 
6eed986
 
 
f757ba6
 
6eed986
 
 
 
 
 
f757ba6
6eed986
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
f757ba6
 
6eed986
 
f757ba6
 
 
 
 
 
 
 
6eed986
 
 
f757ba6
 
 
6eed986
 
 
 
 
 
f757ba6
6eed986
f757ba6
 
6eed986
 
 
 
f757ba6
 
6eed986
 
 
 
 
 
 
 
 
 
 
 
 
f757ba6
6eed986
 
f757ba6
6eed986
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
from llm_call import GeminiLLM
from seminar_edition_ai import upload_file_ex, predictContemplando, predictProclamando, predictFromInit, \
    downloadSermonFile, fileAddresToDownload, predictQuestionBuild, predictDevotionBuild, \
    contemplandoQuestion, proclamandoQuestion, llm, embed_model

HISTORY_ANSWER = ''

with gr.Blocks() as demo:
    gr.Markdown("SermonLab AI Demo.")
    with gr.Tab("Preparando mi Serm贸n"):
        text_input = gr.Textbox(label="T贸pico del serm贸n")

        with gr.Accordion("Contemplando y Proclamando", open=False):
            checkButton = gr.Checkbox(
                value=False,
                label="Mantener historial"
            )
            with gr.Row():
                with gr.Tab("Contemplando"):
                    inbtwContemplando = gr.Button(f"Devocionalmente: {contemplandoQuestion['DEVOCIONALMENTE']}")
                    inbtwContemplandoOne = gr.Button(f"Ex茅gesis: {contemplandoQuestion['EX脡GESIS']}")
                    inbtwContemplandoTwo = gr.Button(f"Cristo: {contemplandoQuestion['CRISTO']}")
                    inbtwContemplandoTree = gr.Button(f"Arco Redentor: {contemplandoQuestion['ARCO REDENTOR']}")
                    inbtwContemplandoFour = gr.Button(f"Evangeli贸n: {contemplandoQuestion['EVANGELION']}")
                    inbtwContemplandoFourOne = gr.Button(f"Evangeli贸n: {contemplandoQuestion['EVANGELION_TWO']}")

                with gr.Tab("Proclamando"):
                    inbtwProclamando = gr.Button(f"P煤blico: {proclamandoQuestion['P脷BLICO']}")
                    inbtwProclamandoOne = gr.Button(f"Historia: {proclamandoQuestion['HISTORIA']}")
                    inbtwProclamandoTwo = gr.Button(f"Expectativas: {proclamandoQuestion['EXPECTATIVAS']}")
                    inbtwProclamandoTwoTwo = gr.Button(f"Expectativas: {proclamandoQuestion['EXPECTATIVAS_TWO']}")

        text_output = gr.Textbox(label="Respuesta", lines=10)

        text_button = gr.Button("Crear")

        text_download = gr.DownloadButton(
            label="Descargar",
            value=fileAddresToDownload,
            every=10
        )

        inbtwContemplando.click(
            fn=lambda x: predictContemplando(f"DEVOCIONALMENTE"),
            inputs=text_input,
            outputs=text_output
        )

        inbtwContemplandoOne.click(
            fn=lambda x: predictContemplando(f"EX脡GESIS"),
            inputs=text_input,
            outputs=text_output
        )

        inbtwContemplandoTwo.click(
            fn=lambda x: predictContemplando(f"CRISTO"),
            inputs=text_input,
            outputs=text_output
        )

        inbtwContemplandoTree.click(
            fn=lambda x: predictContemplando(f"ARCO REDENTOR"),
            inputs=text_input,
            outputs=text_output
        )

        inbtwContemplandoFour.click(
            fn=lambda x: predictContemplando(f"EVANGELION"),
            inputs=text_input,
            outputs=text_output
        )

        inbtwContemplandoFourOne.click(
            fn=lambda x: predictContemplando(f"EVANGELION_TWO"),
            inputs=text_input,
            outputs=text_output
        )

        ##---------------------------------------------------------------------

        inbtwProclamando.click(
            fn=lambda x: predictProclamando(f"P脷BLICO"),
            inputs=text_input,
            outputs=text_output
        )

        inbtwProclamandoOne.click(
            fn=lambda x: predictProclamando(f"HISTORIA"),
            inputs=text_input,
            outputs=text_output
        )

        inbtwProclamandoTwo.click(
            fn=lambda x: predictProclamando(f"EXPECTATIVAS"),
            inputs=text_input,
            outputs=text_output
        )

        inbtwProclamandoTwoTwo.click(
            fn=lambda x: predictProclamando(f"EXPECTATIVAS_TWO"),
            inputs=text_input,
            outputs=text_output
        )

        text_button.click(
            fn=predictFromInit,
            inputs=text_input,
            outputs=text_output
        )

        text_download.click(
            fn=downloadSermonFile,
            inputs=text_output
        )
    with gr.Tab("Obtener gu铆a de la comunidad (Preguntas)"):
        with gr.Row():
            #Bibliografy about components
            # File (https://www.gradio.app/docs/gradio/file)
            # Download Button (https://www.gradio.app/docs/gradio/downloadbutton)
            with gr.Column():
                file_input_question = gr.File()
                upload_button_question = gr.UploadButton("Click to Upload a File", file_types=['.pdf'],
                                                         file_count="multiple")
            with gr.Column():
                temp_slider_question = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=1,
                    step=1,
                    interactive=True,
                    label="Preguntas",
                )
                text_output_question = gr.Textbox(label="Respuesta", lines=10)
        text_button_question = gr.Button("Crear gu铆a de preguntas")
        text_download_question = gr.DownloadButton(
            label="Descargar",
            value=fileAddresToDownload,
            every=10
        )

        text_button_question.click(
            fn=predictQuestionBuild,
            outputs=text_output_question
        )

        upload_button_question.upload(upload_file_ex, inputs=upload_button_question,
                                      outputs=[file_input_question, text_output_question])

    with gr.Tab("Obtener gu铆a de la comunidad (Devocionario)"):
        with gr.Row():
            #Bibliografy about components
            # File (https://www.gradio.app/docs/gradio/file)
            # Download Button (https://www.gradio.app/docs/gradio/downloadbutton)

            with gr.Column():
                file_input_devotions = gr.File()
                upload_button_devotion = gr.UploadButton("Click to Upload a File", file_types=['.pdf'],
                                                         file_count="multiple")

            with gr.Column():
                temp_slider_question = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=1,
                    step=1,
                    interactive=True,
                    label="Cantidad",
                )
                text_output_devotions = gr.Textbox(label="Respuesta", lines=10)
        text_button_devotion = gr.Button("Crear")
        text_download_question = gr.DownloadButton(
            label="Descargar",
            value=fileAddresToDownload,
            every=10
        )

        text_button_devotion.click(
            fn=predictDevotionBuild,
            outputs=text_output_devotions
        )

        upload_button_devotion.upload(
            upload_file_ex,
            inputs=upload_button_devotion,
            outputs=
            [file_input_devotions, text_output_devotions]
        )

if __name__ == "__main__":
    llmBuilder = GeminiLLM()

    embed_model = llmBuilder.getEmbeddingsModel()
    llm = llmBuilder.getLLM()

    demo.launch()