File size: 9,317 Bytes
96ee597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Inference logic.

Copyright PolyAI Limited.
"""
import argparse
import json
import logging
import os
import time
from pathlib import Path

import numpy as np
import soundfile as sf
import torch
from einops import rearrange
from librosa.util import normalize
from pyannote.audio import Inference
from transformers import GenerationConfig, T5ForConditionalGeneration

import constants as c
from data.collation import get_text_semantic_token_collater
from data.semantic_dataset import TextTokenizer
from modules.s2a_model import Pheme
from modules.vocoder import VocoderType

# How many times one token can be generated
MAX_TOKEN_COUNT = 100

logging.basicConfig(level=logging.DEBUG)
device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu"


def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--text", type=str,
        default="I gotta say, I would never expect that to happen!"
    )
    parser.add_argument(
        "--manifest_path", type=str, default="demo/manifest.json")
    parser.add_argument("--outputdir", type=str, default="demo/")
    parser.add_argument("--featuredir", type=str, default="demo/")
    parser.add_argument(
        "--text_tokens_file", type=str,
        default="ckpt/unique_text_tokens.k2symbols"
    )
    parser.add_argument("--t2s_path", type=str, default="ckpt/t2s/")
    parser.add_argument(
        "--a2s_path", type=str, default="ckpt/s2a/s2a.ckpt")

    parser.add_argument("--target_sample_rate", type=int, default=16_000)

    parser.add_argument("--temperature", type=float, default=0.7)
    parser.add_argument("--top_k", type=int, default=210)
    parser.add_argument("--voice", type=str, default="male_voice")

    return parser.parse_args()


class PhemeClient():
    def __init__(self, args):
        self.args = args
        self.outputdir = args.outputdir
        self.target_sample_rate = args.target_sample_rate
        self.featuredir = Path(args.featuredir).expanduser()
        self.collater = get_text_semantic_token_collater(args.text_tokens_file)
        self.phonemizer = TextTokenizer()
    
        self.load_manifest(args.manifest_path)

        # T2S model
        self.t2s = T5ForConditionalGeneration.from_pretrained(args.t2s_path)
        self.t2s = T5ForConditionalGeneration.
        self.t2s.to(device)
        self.t2s.eval()

        # S2A model
        self.s2a = Pheme.load_from_checkpoint(args.a2s_path)
        self.s2a.to(device=device)
        self.s2a.eval()

        # Vocoder
        vocoder = VocoderType["SPEECHTOKENIZER"].get_vocoder(None, None)
        self.vocoder = vocoder.to(device)
        self.vocoder.eval()

        self.spkr_embedding = Inference(
            "pyannote/embedding",
            window="whole",
            use_auth_token=os.environ["HUGGING_FACE_HUB_TOKEN"],
        )

    def load_manifest(self, input_path):
        input_file = {}
        with open(input_path, "rb") as f:
            for line in f:
                temp = json.loads(line)
                input_file[temp["audio_filepath"].split(".wav")[0]] = temp
        self.input_file = input_file

    def lazy_decode(self, decoder_output, symbol_table):
        semantic_tokens = map(lambda x: symbol_table[x], decoder_output)
        semantic_tokens = [int(x) for x in semantic_tokens if x.isdigit()]

        return np.array(semantic_tokens)

    def infer_text(self, text, voice, sampling_config):
        semantic_prompt = np.load(self.args.featuredir + "/audios-speech-tokenizer/semantic/" + f"{voice}.npy")  # noqa
        phones_seq = self.phonemizer(text)[0]
        input_ids = self.collater([phones_seq])
        input_ids = input_ids.type(torch.IntTensor).to(device)

        labels = [str(lbl) for lbl in semantic_prompt]
        labels = self.collater([labels])[:, :-1]
        decoder_input_ids = labels.to(device).long()
        logging.debug(f"decoder_input_ids: {decoder_input_ids}")

        counts = 1E10
        while (counts > MAX_TOKEN_COUNT):
            output_ids = self.t2s.generate(
                input_ids, decoder_input_ids=decoder_input_ids,
                generation_config=sampling_config).sequences
            
            # check repetitiveness
            _, counts = torch.unique_consecutive(output_ids, return_counts=True)
            counts = max(counts).item()

        output_semantic = self.lazy_decode(
            output_ids[0], self.collater.idx2token)

        # remove the prompt
        return output_semantic[len(semantic_prompt):].reshape(1, -1)

    def _load_speaker_emb(self, element_id_prompt):
        wav, _ = sf.read(self.featuredir / element_id_prompt)
        audio = normalize(wav) * 0.95
        speaker_emb = self.spkr_embedding(
            {
                "waveform": torch.FloatTensor(audio).unsqueeze(0),
                "sample_rate": self.target_sample_rate
            }
        ).reshape(1, -1)

        return speaker_emb

    def _load_prompt(self, prompt_file_path):
        element_id_prompt = Path(prompt_file_path).stem
        acoustic_path_prompt =  self.featuredir / "audios-speech-tokenizer/acoustic" / f"{element_id_prompt}.npy"  # noqa
        semantic_path_prompt =  self.featuredir / "audios-speech-tokenizer/semantic" / f"{element_id_prompt}.npy"  # noqa

        acoustic_prompt = np.load(acoustic_path_prompt).squeeze().T
        semantic_prompt = np.load(semantic_path_prompt)[None]

        return acoustic_prompt, semantic_prompt

    def infer_acoustic(self, output_semantic, prompt_file_path):
        semantic_tokens = output_semantic.reshape(1, -1)
        acoustic_tokens = np.full(
            [semantic_tokens.shape[1], 7], fill_value=c.PAD)

        acoustic_prompt, semantic_prompt = self._load_prompt(prompt_file_path)  # noqa
        
        # Prepend prompt
        acoustic_tokens = np.concatenate(
            [acoustic_prompt, acoustic_tokens], axis=0)
        semantic_tokens = np.concatenate([
            semantic_prompt, semantic_tokens], axis=1)

        # Add speaker
        acoustic_tokens = np.pad(
            acoustic_tokens, [[1, 0], [0, 0]], constant_values=c.SPKR_1)
        semantic_tokens = np.pad(
            semantic_tokens, [[0,0], [1, 0]], constant_values=c.SPKR_1)

        speaker_emb = None
        if self.s2a.hp.use_spkr_emb:
            speaker_emb = self._load_speaker_emb(prompt_file_path)
            speaker_emb = np.repeat(
                speaker_emb, semantic_tokens.shape[1], axis=0)
            speaker_emb = torch.from_numpy(speaker_emb).to(device)
        else:
            speaker_emb = None

        acoustic_tokens = torch.from_numpy(
            acoustic_tokens).unsqueeze(0).to(device).long()
        semantic_tokens = torch.from_numpy(semantic_tokens).to(device).long()
        start_t = torch.tensor(
            [acoustic_prompt.shape[0]], dtype=torch.long, device=device)
        length = torch.tensor([
            semantic_tokens.shape[1]], dtype=torch.long, device=device)

        codes = self.s2a.model.inference(
            acoustic_tokens,
            semantic_tokens,
            start_t=start_t,
            length=length,
            maskgit_inference=True,
            speaker_emb=speaker_emb
        )

        # Remove the prompt
        synth_codes = codes[:, :, start_t:]
        synth_codes = rearrange(synth_codes, "b c t -> c b t")

        return synth_codes

    def generate_audio(self, text, voice, sampling_config, prompt_file_path):
        start_time = time.time()
        output_semantic = self.infer_text(
            text, voice, sampling_config
        )
        logging.debug(f"semantic_tokens: {time.time() - start_time}")

        start_time = time.time()
        codes = self.infer_acoustic(output_semantic, prompt_file_path)
        logging.debug(f"acoustic_tokens: {time.time() - start_time}")

        start_time = time.time()
        audio_array = self.vocoder.decode(codes)
        audio_array = rearrange(audio_array, "1 1 T -> T").cpu().numpy()
        logging.debug(f"vocoder time: {time.time() - start_time}")

        return audio_array

    @torch.no_grad()
    def infer(
        self, text, voice="male_voice", temperature=0.7,
        top_k=210, max_new_tokens=750,
    ):
        sampling_config = GenerationConfig.from_pretrained(
            self.args.t2s_path,
            top_k=top_k,
            num_beams=1,
            do_sample=True,
            temperature=temperature,
            num_return_sequences=1,
            max_new_tokens=max_new_tokens,
            return_dict_in_generate=True,
            output_scores=True
        )

        voice_data = self.input_file[voice]
        prompt_file_path = voice_data["audio_prompt_filepath"]
        text = voice_data["text"] + " " + text

        audio_array = self.generate_audio(
            text, voice, sampling_config, prompt_file_path)

        return audio_array


if __name__ == "__main__":
    args = parse_arguments()
    args.outputdir = Path(args.outputdir).expanduser()
    args.outputdir.mkdir(parents=True, exist_ok=True)
    args.manifest_path = Path(args.manifest_path).expanduser()

    client = PhemeClient(args)
    audio_array = client.infer(args.text, voice=args.voice)
    sf.write(os.path.join(
        args.outputdir, f"{args.voice}.wav"), audio_array, 
        args.target_sample_rate
    )